A262341 Largest primitive prime factor of Fibonacci number F(n), or 1 if no primitive.
1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 113, 41, 421, 199, 28657, 23, 3001, 521, 109, 281, 514229, 31, 2417, 2207, 19801, 3571, 141961, 107, 2221, 9349, 135721, 2161, 59369, 211, 433494437, 307, 109441, 461, 2971215073, 1103, 6168709, 151
Offset: 1
Keywords
Examples
The prime factors of F(46)= 139 * 461 * 28657 that do not divide any smaller Fibonacci number are 139 and 461, so a(46) = 461.
Links
- R. D. Carmichael, On the numerical factors of the arithmetic forms α^n±β^n, Annals of Math., 15 (1913), 30-70.
- Blair Kelly, Fibonacci and Lucas Factorizations
- Ron Knott, Fibonacci numbers and special prime factors
- Wikipedia, Carmichael's theorem
Programs
-
Mathematica
prms={}; Table[f=First/@FactorInteger[Fibonacci[n]]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, Last[p]], {n, 50}]
-
Perl
use ntheory ":all"; my %s; for (1..100) { my @f = factor(lucasu(1,-1,$)); pop @f while @f && $s{$f[-1]}++; say "$ ", $f[-1] || 1; } # Dana Jacobsen, Oct 13 2015
Comments