A001578 Smallest primitive prime factor of Fibonacci number F(n), or 1 if F(n) has no primitive prime factor.
1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 37, 41, 421, 199, 28657, 23, 3001, 521, 53, 281, 514229, 31, 557, 2207, 19801, 3571, 141961, 107, 73, 9349, 135721, 2161, 2789, 211, 433494437, 43, 109441, 139, 2971215073, 1103, 97, 101
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1452 (terms 1..1000 from Blair Kelly and T. D. Noe, terms 1409..1422 from Tyler Busby)
- Mansur S. Boase, A Result About the Primes Dividing Fibonacci Numbers, The Fibonacci Quarterly, 39.5 (2001) 386.
- R. D. Carmichael, On the numerical factors of the arithmetic forms α^n ± β^n, Annals of Math., 15 (1/4) (1913), 30-70.
- D. Jarden, On the greatest primitive divisors of Fibonacci and Lucas numbers with prime-power subscripts, Fib. Quart. 1(#3) (1963), 15-31.
- Blair Kelly, Fibonacci and Lucas Factorizations
Crossrefs
Programs
-
Maple
for n from 1 to 350 do f:= combinat:-fibonacci(n); if not isprime(n) then for k in map(t -> n/t, numtheory:-factorset(n)) do fk:= combinat:-fibonacci(k); g:= igcd(f,fk); while g > 1 do f:= f/g; g:= igcd(f,fk); od od fi; if f = 1 then A[n]:= 1; next fi; F:= map(t -> t[1],ifactors(f,easy)[2]); p:= select(type, F,integer); if nops(p) >= 1 then A[n]:= min(p); next fi; A[n]:= min(numtheory:-factorset(f)); od: seq(A[i],i=1..350); # Robert Israel, Oct 13 2015
-
Mathematica
prms={}; Table[f=First/@FactorInteger[Fibonacci[n]]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, First[p]], {n, 50}]
-
PARI
a(n) = {my(v = vector(n, k, fibonacci(k))); my(vf = vector(n, k, factor(v[k])[,1]~)); for (k=1, n-1, vf[n] = setminus(vf[n], vf[k]);); if (#vf[n], vecmin(vf[n]), 1);} \\ Michel Marcus, May 11 2021
Formula
a(n) = 1 if and only if n = 1, 2, 6, or 12, by Carmichael's theorem. - Jonathan Sondow, Dec 07 2017
Extensions
Edited by T. D. Noe, Apr 15 2004
Definition clarified at the suggestion of Joerg Arndt by Jonathan Sondow, Oct 13 2015
Comments