A262343 Numerator of 3*(1-2/n), for n >= 3.
1, 3, 9, 2, 15, 9, 7, 12, 27, 5, 33, 18, 13, 21, 45, 8, 51, 27, 19, 30, 63, 11, 69, 36, 25, 39, 81, 14, 87, 45, 31, 48, 99, 17, 105, 54, 37, 57, 117, 20, 123, 63, 43, 66, 135, 23, 141, 72, 49, 75, 153, 26, 159, 81, 55, 84, 171, 29, 177, 90, 61, 93, 189, 32
Offset: 3
Links
- Peter Kagey, Table of n, a(n) for n = 3..10000
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2,0,0,0,0,0,-1).
Programs
-
Magma
[Numerator(3*(1-2/n)): n in [3..80]]; // Vincenzo Librandi, Sep 19 2015
-
Maple
a:= proc(n): numer(3*(n-2)/n) end: seq(a(n), n=3..66); # Johannes W. Meijer, Jul 03 2016
-
Mathematica
Table[Numerator[3 (1 - 2/n)], {n, 3, 60}] (* Michael De Vlieger, Sep 18 2015 *)
-
PARI
{for(n=3, 100, a=numerator(3*(1-2/n)); print1 (a, ", "))}
-
PARI
Vec(x^3*(3*x^10+x^9+9*x^8+6*x^7+5*x^6+9*x^5+15*x^4+2*x^3+9*x^2+3*x+1)/((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 20 2015
Formula
a(n) = numerator(3*(1-2/n)), for n >= 3.
From Peter Kagey, Sep 18 2015: (Start)
For integers k:
a(6k+0) = 3 * k - 1
a(6k+1) = 18 * k - 3
a(6k+2) = 9 * k + 1
a(6k+3) = 6 * k + 1
a(6k+4) = 9 * k + 3
a(6k+5) = 18 * k + 9
(End)
From Colin Barker, Sep 20 2015: (Start)
a(n) = 2*a(n-6) - a(n-12).
G.f.: x^3*(3*x^10+x^9+9*x^8+6*x^7+5*x^6+9*x^5+15*x^4+2*x^3+9*x^2+3*x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2).
(End)
Extensions
More terms from Vincenzo Librandi, Sep 19 2015
Comments