cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262343 Numerator of 3*(1-2/n), for n >= 3.

Original entry on oeis.org

1, 3, 9, 2, 15, 9, 7, 12, 27, 5, 33, 18, 13, 21, 45, 8, 51, 27, 19, 30, 63, 11, 69, 36, 25, 39, 81, 14, 87, 45, 31, 48, 99, 17, 105, 54, 37, 57, 117, 20, 123, 63, 43, 66, 135, 23, 141, 72, 49, 75, 153, 26, 159, 81, 55, 84, 171, 29, 177, 90, 61, 93, 189, 32
Offset: 3

Views

Author

Kival Ngaokrajang, Sep 18 2015

Keywords

Comments

Given a regular n-gon with side length s, draw a circular arc of radius s around each of the n-gon's vertices so as to connect that vertex's two nearest neighbors, drawing the arc on the shorter side of the circle; i.e., each arc will extend through an angle of Pi*(n-2)/n radians (see illustration). Connect the n arcs thus drawn into a single closed curve if n is odd, or into a pair of identical (but with one rotated by 2*Pi/n radians with respect to the other) overlapping closed curves if n is even. The arcs and the curve (or pair of curves) have the following properties:
(i) Since the length L(n) of each single arc is L(n) = s*Pi*(n-2)/n, the ratio of the length of a single arc for an n-gon to the length of a single arc for the n=3 case is L(n)/L(3) = (s*Pi*(n-2)/n)/(s*Pi*(3-2)/3) = 3(1-2/n). The numerator and denominator of 3(1-2/n) are a(n) and A060789(n) respectively.
(ii) Since the loop length (considering only one of the two loops when there are two overlapping loops) is L(n)*n when n is odd, or L(n)*n/2 when n is even, the ratio of the loop length for an n-gon to the loop length for the n=3 case is (L(n)*n)/(L(3)*3) = (s*Pi*(n-2))/(s*Pi) = n-2 when n is odd, or (L(n)*n/2)/(L(3)*3) = (s*Pi*(n-2)/2)/(s*Pi) = (n-2)/2 when n is even; thus, whether odd or even, that ratio is numerator(1-2/n) = A026741(n-2).
The moment generating function of p(x, m=1, n=2, mu=2) = 3*x*E(x, 1, 2), see A163931 and A274181, is given by M(a) = (3*a-6)/(a^2*(a-1)) + 6*log(1-a)/a^3. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 04 2016

Crossrefs

Programs

  • Magma
    [Numerator(3*(1-2/n)): n in [3..80]]; // Vincenzo Librandi, Sep 19 2015
    
  • Maple
    a:= proc(n): numer(3*(n-2)/n) end: seq(a(n), n=3..66); # Johannes W. Meijer, Jul 03 2016
  • Mathematica
    Table[Numerator[3 (1 - 2/n)], {n, 3, 60}] (* Michael De Vlieger, Sep 18 2015 *)
  • PARI
    {for(n=3, 100, a=numerator(3*(1-2/n)); print1 (a, ", "))}
    
  • PARI
    Vec(x^3*(3*x^10+x^9+9*x^8+6*x^7+5*x^6+9*x^5+15*x^4+2*x^3+9*x^2+3*x+1)/((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 20 2015

Formula

a(n) = numerator(3*(1-2/n)), for n >= 3.
From Peter Kagey, Sep 18 2015: (Start)
For integers k:
a(6k+0) = 3 * k - 1
a(6k+1) = 18 * k - 3
a(6k+2) = 9 * k + 1
a(6k+3) = 6 * k + 1
a(6k+4) = 9 * k + 3
a(6k+5) = 18 * k + 9
(End)
From Colin Barker, Sep 20 2015: (Start)
a(n) = 2*a(n-6) - a(n-12).
G.f.: x^3*(3*x^10+x^9+9*x^8+6*x^7+5*x^6+9*x^5+15*x^4+2*x^3+9*x^2+3*x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2).
(End)

Extensions

More terms from Vincenzo Librandi, Sep 19 2015