A264906 a(n) is the denominator of the 2nd term of the power series which is the loop length in a regular n-gon. (See comment.)
25, 36, 49, 64, 81, 100, 121, 72, 169, 196, 225, 256, 289, 324, 361, 100, 441, 484, 529, 576, 625, 676, 729, 392, 841, 900, 961, 1024, 1089, 1156, 1225, 324, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 968, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 676, 2809
Offset: 5
Examples
L(5) = 2*Pi - 1/25*Pi^3 + 1/7500*Pi^5 - 1/5625000*Pi^7 + 1/7875000000*Pi^9 - ... L(6) = 2*Pi - 1/36*Pi^3 + 1/15552*Pi^5 - 1/16796160*Pi^7 + 1/33861058560*Pi^9 - ... L(7) = 6*Pi - 3/49*Pi^3 + 1/9604*Pi^5 - 1/14117880*Pi^7 + 1/38739462720*Pi^9 - ... L(8) = 2*Pi - 1/64*Pi^3 + 1/49152*Pi^5 - 1/94371840*Pi^7 + 1/338228674560*Pi^9 - ... L(9) = 10*Pi - 5/81*Pi^3 + 5/78732*Pi^5 - 1/38263752*Pi^7 + 1/173564379072*Pi^9 - ... L(10) = 6*Pi - 3/100*Pi^3 + 1/40000*Pi^5 - 1/120000000*Pi^7 + 1/672000000000*Pi^9 - ... ... Let T(n) be the total of the loop lengths, i.e., T(n) = L(n) if n is odd, 2*L(n) if n mod 4 = 2, and 4*L(n) if n mod 4 = 0. Multiplying each of the above series expansions for L(n) by the appropriate multiplier (i.e., 1, 2, or 4) to get T(n) gives expansions for L(5)..L(10) that agree with the general form T(n) = 2*(n-4) * Sum_{k>=0} (-1)^k * Pi^(2k+1) / ((2k)! * n^(2k)) for n=5..10.
Links
- Kival Ngaokrajang, Illustration of loop length L(n) for n = 5..12
Programs
-
Magma
[n^2 div Gcd((n-4) div Gcd(n-4,4),n): n in [5..60]]; // Vincenzo Librandi, Nov 29 2015
-
Mathematica
Table[n^2/GCD[(n - 4)/GCD[n - 4, 4], n], {n, 5, 46}] (* Michael De Vlieger, Nov 28 2015 *)
-
PARI
{for(n = 5, 100, k = 1; if (Mod(n,4)==0, k = 4); if (Mod(n,4)==2, k = 2); arc = 2*cos(x/n)*x*(1-4/n); loop = n*arc/k; print(loop))} \\ L(n)
-
PARI
{for(n = 5, 100, a = n^2/gcd((n-4)/gcd(n-4,4), n); print1(a, ", "))} \\ a(n)
Formula
a(n) = n^2/gcd((n-4)/gcd(n-4,4),n); for n >= 5.
Extensions
More terms from Vincenzo Librandi, Nov 29 2015
Comments