A262347 Number of subsets of [1..n] of maximal size that are free of 3-term arithmetic progressions.
1, 1, 1, 3, 2, 1, 4, 10, 25, 4, 24, 7, 25, 6, 1, 4, 14, 43, 97, 220, 2, 18, 62, 232, 2, 33, 2, 12, 36, 106, 1, 11, 2, 4, 14, 40, 2, 4, 86, 307, 20, 1, 4, 14, 41, 99, 266, 674, 1505, 3510, 7726, 14, 50, 156, 2, 8, 26, 56, 2, 4, 6, 14, 48, 2, 4, 8, 16, 28, 108, 319, 1046, 4, 26, 82, 1, 2
Offset: 0
Keywords
Examples
The largest subset of [1,6] that doesn't have any 3 terms in arithmetic progression has size 4. There are 4 such subsets with this property: {1,2,4,5}, {1,2,5,6}, {1,3,4,6} and {2,3,5,6}, so a(6)=4.
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..140
- Fausto A. C. Cariboni, All sets that yield a(n) for n = 4..130., Feb 19 2018.
- Janusz Dybizbanski, Sequences containing no 3-term arithmetic progressions, The Electronic Journal of Combinatorics, 19, no. 2 (2012).
- Index entries related to non-averaging sequences
Programs
-
Maple
G:= proc(n, cons, t) option remember; local consn, consr; if n < t or member({},cons) then return {} fi; if t = 0 then return {{}} fi; consn, consr:= selectremove(has,cons,n); consn:= subs(n=NULL,consn); procname(n-1,consr,t) union map(`union`,procname(n-1,consr union consn,t-1),{n}); end proc: F:= proc(n) local m,cons,R; m:= A003002(n-1); cons:= {seq(seq({i,i+j,i+2*j},i=1..n-2*j),j=1..(n-1)/2)}; R:= G(n,cons,m+1); if R = {} then A003002(n):= m; G(n,cons,m); else A003002(n):= m+1; R fi end proc: A003002(1):= 1: a[1]:= 1: for n from 2 to 40 do a[n]:= nops(F(n)) od: seq(a[i],i=1..40); # Robert Israel, Sep 20 2015
-
Mathematica
A003002 = Cases[Import["https://oeis.org/A003002/b003002.txt", "Table"], {, }][[All, 2]]; a[n_] := a[n] = Count[Subsets[Range[n], {A003002[[n+1]]}], s_ /; !MatchQ[s, {_, n1_, _, n2_, _, n3_, _} /; n2 - n1 == n3 - n2]]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 25}] (* Jean-François Alcover, May 30 2020 *)
Extensions
a(25) to a(44) from Robert Israel, Sep 20 2015
a(45) to a(75) from Fausto A. C. Cariboni, Jan 15 2018
a(0)=1 prepended by Alois P. Heinz, May 16 2020
Comments