cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A262358 Inverse permutation to A262356.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 13, 28, 30, 31, 35, 39, 43, 47, 51, 55, 15, 32, 38, 60, 61, 63, 65, 67, 69, 71, 17, 36, 42, 62, 77, 78, 80, 82, 84, 86, 19, 40, 46, 64, 79, 89, 90, 92, 94, 96, 21, 44, 50, 66, 81, 91, 99, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 19 2015

Keywords

Comments

A262377 and A262377 give primes and where they occur: A262377(n)=a(A262378(n)).

Crossrefs

Cf. A262356, A262360 (fixed points), A262377 (primes), A262378.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a262358 = (+ 1) . fromJust . (`elemIndex` a262356_list)
  • Mathematica
    terms = 100;
    (* b = A262356 *) b[1] = 1; b[n_] := b[n] = Module[{s, k}, s = Rest[ IntegerDigits[b[n-1]]] //. {(0).., d__} :> {d}; For[k = 2, True, k++, If[FreeQ[Array[b, n-1], k], If[s == {0}, Return[k], If[IntegerDigits[ k][[1 ;; Length[s]]] == s, Return[k]]]]]];
    Sort[Table[{b[n], n}, {n, 1, 2 terms}]][[1 ;; terms, 2]] (* Jean-François Alcover, Mar 12 2019 *)

A262363 Primes in A262356.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 101, 41, 103, 61, 71, 107, 29, 43, 53, 37, 73, 83, 109, 47, 59, 67, 79, 97, 89, 113, 401, 601, 701, 211, 503, 307, 311, 409, 509, 607, 709, 907, 809, 1009, 127, 131, 2003, 313, 4001, 137, 7001, 139, 9001, 1103, 3001, 1201
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 20 2015

Keywords

Comments

a(n) = A262356(A262371(n));
a permutation of the prime numbers, cf. A262377.

Crossrefs

Programs

  • Haskell
    a262363 n = a262363_list !! (n-1)
    a262363_list = filter ((== 1) . a010051') a262356_list

A262390 Subsequence of terms starting with 1 in A262356.

Original entry on oeis.org

1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 1000, 111, 112, 120, 113, 130, 114, 140, 115, 150, 116, 160, 117, 170, 118, 180, 119, 190, 1001, 121, 1100, 1002, 122, 123, 1003, 1101, 1010, 1004, 1005, 1006
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2015

Keywords

Comments

A000030(a(n)) = 1;
A262356(A262393(n)) = a(n).

Crossrefs

Programs

  • Haskell
    a262390 n = a262390_list !! (n-1)
    a262390_list = filter ((== 1) . a000030) a262356_list

Extensions

Typo in name corrected by Andrey Zabolotskiy, Sep 22 2017

A262360 Fixed points of A262356 and of A262358.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 4410, 3060996
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 19 2015

Keywords

Comments

A261466(a(n)) = a(n).

Crossrefs

Programs

  • Haskell
    a262360 n = a262360_list !! (n-1)
    a262360_list = [x | x <- [1..], a262356 x == x]

Extensions

a(15) from Alois P. Heinz, Sep 20 2015

A262371 Positions of prime numbers in A262356.

Original entry on oeis.org

2, 3, 5, 7, 11, 14, 22, 26, 31, 32, 33, 36, 37, 44, 48, 53, 55, 62, 64, 67, 68, 70, 74, 82, 96, 100, 110, 111, 114, 127, 131, 141, 146, 163, 176, 179, 187, 200, 211, 216, 227, 228, 232, 235, 251, 260, 267, 268, 274, 281, 283, 287, 289, 292, 294, 299, 314
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 20 2015

Keywords

Comments

In other words, the n-th prime appears in A262356 at position a(n). - N. J. A. Sloane, Sep 29 2015
A262363(n) = A262356(a(n)).

Crossrefs

Programs

  • Haskell
    a262371 n = a262371_list !! (n-1)
    a262371_list = filter ((== 1) . a010051' . a262356) [1..]

A262393 Positions of numbers starting with 1 in A262356.

Original entry on oeis.org

1, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 29, 33, 34, 37, 41, 45, 49, 53, 57, 74, 119, 120, 121, 122, 123, 127, 128, 132, 133, 137, 138, 142, 143, 147, 148, 152, 153, 157, 158, 161, 162, 164, 165, 167, 170, 186, 188, 189, 190, 203, 214, 223, 230, 235, 238
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2015

Keywords

Comments

A262356(a(n)) = A262390(n).

Crossrefs

Programs

  • Haskell
    a262393 n = a262393_list !! (n-1)
    a262393_list = filter ((== 1) . a000030 . a262356) [1..]

A262282 a(1)=11. For n>1, let s denote the digit-string of a(n-1) with the first digit omitted. Then a(n) is the smallest prime not yet present which starts with s.

Original entry on oeis.org

11, 13, 3, 2, 5, 7, 17, 71, 19, 97, 73, 31, 101, 103, 37, 79, 907, 701, 107, 709, 911, 113, 131, 311, 1103, 1031, 313, 137, 373, 733, 331, 317, 173, 739, 397, 971, 719, 191, 919, 193, 937, 379, 797, 977, 773, 7307, 307, 727, 271, 7103, 1033, 337, 3701, 7013
Offset: 1

Views

Author

Keywords

Comments

If a(n-1) has a single digit then a(n) is simply the smallest missing prime.
Leading zeros in s are ignored.
The b-file suggests that there are infinitely many primes that do not appear in the sequence. However, there is no proof at present that any particular prime (23, say) never appears.
Alois P. Heinz points out that this sequence and A262283 eventually merge (see the latter entry for details). - N. J. A. Sloane, Sep 19 2015
A variant without the prime number condition: A262356. - Reinhard Zumkeller, Sep 19 2015

Examples

			a(1)=11, so s=1, a(2) is smallest missing prime that starts with 1, so a(2)=13. Then s=3, so a(3)=3. Then s is the empty string, so a(4)=2, and so on.
		

Crossrefs

Suggested by A089755. Cf. A262283.
Cf. A262356.

Programs

  • Haskell
    import Data.List (isPrefixOf, delete)
    a262282 n = a262282_list !! (n-1)
    a262282_list = 11 : f "1" (map show (delete 11 a000040_list)) where
       f xs pss = (read ys :: Integer) :
                  f (dropWhile (== '0') ys') (delete ys pss)
                  where ys@(_:ys') = head $ filter (isPrefixOf xs) pss
    -- Reinhard Zumkeller, Sep 19 2015

Extensions

More terms from Alois P. Heinz, Sep 18 2015

A262374 a(1) = 1; for n > 1, let s denote the binary representation of a(n-1) with the first bit omitted. Then a(n) is the smallest number not yet present whose binary representation starts with s, omitting leading zeros.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 12, 9, 10, 11, 13, 20, 16, 14, 24, 17, 15, 28, 25, 18, 19, 26, 21, 22, 27, 23, 29, 52, 40, 32, 30, 56, 48, 33, 31, 60, 57, 50, 36, 34, 35, 49, 68, 37, 41, 38, 51, 39, 58, 53, 42, 43, 44, 96, 64, 45, 54, 88, 97, 66, 46, 59, 55, 47, 61
Offset: 1

Views

Author

Allan C. Wechsler, Sep 20 2015

Keywords

Comments

It seems clear that every number will appear. It would be nice to have a formal proof. - N. J. A. Sloane, Sep 20 2015

Examples

			: 1                                      ...  1
:  10                                    ...  2
:    11                                  ...  3
:     100                                ...  4
:        101                             ...  5
:          110                           ...  6
:           1000                         ...  8
:               111                      ...  7
:                1100                    ... 12
:                 1001                   ...  9
:                    1010                ... 10
:                      1011              ... 11
:                        1101            ... 13
:                         10100          ... 20
:                           10000        ... 16
:                                1110    ... 14
:                                 11000  ... 24
:                                  10001 ... 17
		

Crossrefs

Binary counterpart of A262356.
A262381 gives the binary representations.
Cf. A262388.
Showing 1-8 of 8 results.