A262365 A(n,k) is the n-th prime whose binary expansion begins with the binary expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
2, 2, 3, 3, 5, 5, 17, 7, 11, 7, 5, 19, 13, 17, 11, 13, 11, 37, 29, 19, 13, 7, 53, 23, 67, 31, 23, 17, 17, 29, 97, 41, 71, 53, 37, 19, 19, 67, 31, 101, 43, 73, 59, 41, 23, 41, 37, 71, 59, 103, 47, 79, 61, 43, 29, 11, 43, 73, 131, 61, 107, 83, 131, 97, 47, 31
Offset: 1
Examples
Square array A(n,k) begins: : 2, 2, 3, 17, 5, 13, 7, 17, ... : 3, 5, 7, 19, 11, 53, 29, 67, ... : 5, 11, 13, 37, 23, 97, 31, 71, ... : 7, 17, 29, 67, 41, 101, 59, 131, ... : 11, 19, 31, 71, 43, 103, 61, 137, ... : 13, 23, 53, 73, 47, 107, 113, 139, ... : 17, 37, 59, 79, 83, 109, 127, 257, ... : 19, 41, 61, 131, 89, 193, 227, 263, ...
Links
Crossrefs
Programs
-
Maple
u:= (h, t)-> select(isprime, [seq(h*2^t+k, k=0..2^t-1)]): A:= proc(n, k) local l, p; l:= proc() [] end; p:= proc() -1 end; while nops(l(k))
-
Mathematica
nmax = 14; col[k_] := col[k] = Module[{bk = IntegerDigits[k, 2], lk, pp = {}, coe = 1}, lbk = Length[bk]; While[Length[pp] < nmax, pp = Select[Prime[Range[ coe*nmax]], Quiet@Take[IntegerDigits[#, 2], lbk] == bk&]; coe++]; pp]; A[n_, k_] := col[k][[n]]; Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 25 2021 *)