cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A262369 A(n,k) is the n-th prime whose decimal expansion begins with the decimal expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

11, 2, 13, 3, 23, 17, 41, 31, 29, 19, 5, 43, 37, 211, 101, 61, 53, 47, 307, 223, 103, 7, 67, 59, 401, 311, 227, 107, 83, 71, 601, 503, 409, 313, 229, 109, 97, 89, 73, 607, 509, 419, 317, 233, 113, 101, 907, 809, 79, 613, 521, 421, 331, 239, 127
Offset: 1

Views

Author

Alois P. Heinz, Sep 20 2015

Keywords

Examples

			Square array A(n,k) begins:
:  11,   2,   3,  41,   5,  61,   7,  83, ...
:  13,  23,  31,  43,  53,  67,  71,  89, ...
:  17,  29,  37,  47,  59, 601,  73, 809, ...
:  19, 211, 307, 401, 503, 607,  79, 811, ...
: 101, 223, 311, 409, 509, 613, 701, 821, ...
: 103, 227, 313, 419, 521, 617, 709, 823, ...
: 107, 229, 317, 421, 523, 619, 719, 827, ...
: 109, 233, 331, 431, 541, 631, 727, 829, ...
		

Crossrefs

Row n=1 gives A018800.
Main diagonal gives A077345.

Programs

  • Maple
    u:= (h, t)-> select(isprime, [seq(h*10^t+k, k=0..10^t-1)]):
    A:= proc(n, k) local l, p;
          l:= proc() [] end; p:= proc() -1 end;
          while nops(l(k))
    				
  • Mathematica
    u[h_, t_] := Select[Table[h*10^t + k, {k, 0, 10^t - 1}], PrimeQ];
    A[n_, k_] := Module[{l, p}, l[] = {}; p[] = -1; While[Length[l[k]] < n, p[k] = p[k]+1; l[k] = Join[l[k], u[k, p[k]]]]; l[k][[n]]];
    Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)

A080165 Primes having initial digits "10" in binary representation.

Original entry on oeis.org

2, 5, 11, 17, 19, 23, 37, 41, 43, 47, 67, 71, 73, 79, 83, 89, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 521, 523, 541, 547, 557, 563
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 03 2003

Keywords

Comments

Also primes that terminate at 4,2,1 in the x-1 problem: Repeat, if x is even divide by 2 else subtract 1, until 4 is reached. - Cino Hilliard, Mar 27 2003
David W. Wilson remarks that it follows from standard results about primes in short intervals (see for example Harman, 1982) that there are infinitely many numbers in any base b starting with any nonzero prefix c. - N. J. A. Sloane, Sep 19 2015

Examples

			A000040(15)=47 -> '101111' therefore 47 is a term.
		

Crossrefs

Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Column k=2 of A262365.

Programs

  • Mathematica
    Select[Prime[Range[1000]], IntegerDigits[#, 2][[;;2]] == {1, 0}&] (* Jean-François Alcover, Oct 25 2021 *)
  • PARI
    pxnm1(n,p) = { forprime(x=2,n, p1 = x; while(p1>1, if(p1%2==0,p1/=2,p1 = p1*p-1;); if(p1 == 4,break); ); if(p1 == 4,print1(x" ")) ) }

A080166 Primes having initial digits "11" in binary representation.

Original entry on oeis.org

3, 7, 13, 29, 31, 53, 59, 61, 97, 101, 103, 107, 109, 113, 127, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 769, 773, 787, 797, 809, 811, 821
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 03 2003

Keywords

Comments

Also primes that terminate at 3,2,1 in the x-1 problem: Repeat, if x is even divide by 2 else subtract 1, until 3 is reached. - Cino Hilliard, Mar 27 2003
Or, primes in A004760. - Vladimir Shevelev, May 04 2009

Examples

			A000040(16)=53 -> '110101' therefore 53 is a term.
		

Crossrefs

Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Column k=3 of A262365.

Programs

  • Mathematica
    Select[Prime[Range[200]],Take[IntegerDigits[#,2],2]=={1,1}&] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    pxnm1(n,p) = { forprime(x=2,n, p1 = x; while(p1>1, if(p1%2==0,p1/=2,p1 = p1*p-1;); if(p1 == 3,break); ); if(p1 == 3,print1(x" ")) ) }

A262284 Primes whose binary expansion begins 101.

Original entry on oeis.org

5, 11, 23, 41, 43, 47, 83, 89, 163, 167, 173, 179, 181, 191, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399
Offset: 1

Views

Author

N. J. A. Sloane, Sep 19 2015

Keywords

Crossrefs

Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Suggested by A262350.
Column k=5 of A262365.

Programs

  • Maple
    lis:=[]; q:=5;
    for i from 1 to 10 do for j from 1 to 2^i-1 do
    if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
    lis;
  • Mathematica
    Select[Flatten[Table[FromDigits[#,2]&/@(Join[{1,0,1},#]&/@Tuples[{0,1},n]),{n,0,10}]],PrimeQ] (* Harvey P. Dale, Oct 17 2021 *)

A262285 Primes whose binary expansion begins 111.

Original entry on oeis.org

7, 29, 31, 59, 61, 113, 127, 227, 229, 233, 239, 241, 251, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873
Offset: 1

Views

Author

N. J. A. Sloane, Sep 19 2015

Keywords

Crossrefs

Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Suggested by A262350.
Column k=7 of A262365.

Programs

  • Maple
    lis:=[]; q:=7;
    for i from 1 to 10 do for j from 1 to 2^i-1 do
    if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
    lis;
  • Mathematica
    Select[FromDigits[#,2]&/@(Join[{1,1,1},#]&/@Flatten[Table[Tuples[{0,1},n],{n,0,8}],1]),PrimeQ] (* or *) Select[Prime[Range[ 3,350]],Take[ IntegerDigits[ #,2],3]=={1,1,1}&] (* Harvey P. Dale, May 02 2021 *)

A262286 Primes whose binary expansion begins 100.

Original entry on oeis.org

17, 19, 37, 67, 71, 73, 79, 131, 137, 139, 149, 151, 157, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093
Offset: 1

Views

Author

N. J. A. Sloane, Sep 19 2015

Keywords

Crossrefs

Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Suggested by A262350.
Column k=4 of A262365.

Programs

  • Maple
    lis:=[]; q:=4;
    for i from 1 to 10 do for j from 1 to 2^i-1 do
    if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
    lis;

A262287 Primes whose binary expansion begins 110.

Original entry on oeis.org

13, 53, 97, 101, 103, 107, 109, 193, 197, 199, 211, 223, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627
Offset: 1

Views

Author

N. J. A. Sloane, Sep 19 2015

Keywords

Crossrefs

Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Suggested by A262350.
Column k=6 of A262365.

A262350 a(1) = 2. For n>1, let s denote the binary string of a(n-1) with the leftmost 1 and following consecutive 0's removed. Then a(n) is the smallest prime not yet present whose binary representation begins with s.

Original entry on oeis.org

2, 3, 5, 7, 13, 11, 29, 53, 43, 23, 31, 61, 59, 109, 181, 107, 173, 367, 223, 191, 127, 509, 1013, 4013, 3931, 3767, 13757, 11131, 2939, 1783, 3037, 1979, 3821, 3547, 1499, 1901, 877, 2927, 1759, 1471, 1789, 1531, 2029, 2011, 7901, 60887, 56239, 93887, 28351
Offset: 1

Views

Author

Alois P. Heinz, Sep 18 2015

Keywords

Comments

This sequence is infinite. The number of primes that are not in this sequence is conjectured to be infinite.
Proof of first statement, following a comment from David W. Wilson: It follows from standard results about primes in short intervals (see for example Harman, 1982) that there are infinitely many numbers in any base b starting with any nonzero prefix c. So there are infinitely many primes whose binary expansion begins with s, and so a(n) always exists. - N. J. A. Sloane, Sep 19 2015

Examples

			: 10                             ... 2
:   11                           ... 3
:    101                         ... 5
:      111                       ... 7
:       1101                     ... 13
:        1011                    ... 11
:          11101                 ... 29
:           110101               ... 53
:            101011              ... 43
:              10111             ... 23
:                11111           ... 31
:                 111101         ... 61
:                  111011        ... 59
:                   1101101      ... 109
:                    10110101    ... 181
:                      1101011   ... 107
:                       10101101 ... 173
		

Crossrefs

Binary analog of A262283.
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Cf. A262365.

Programs

  • Maple
    b:= proc() true end:
    a:= proc(n) option remember; local h, k, ok, p, t;
          if n=1 then p:=2
        else h:= (k-> irem(k, 2^(ilog2(k))))(a(n-1)); p:= h;
             ok:= isprime(p) and b(p);
             for t while not ok do
               for k to 2^t-1 while not ok do p:= h*2^t+k;
                 ok:= isprime(p) and b(p)
               od
             od
          fi; b(p):= false; p
        end:
    seq(a(n), n=1..70);

A164022 a(n) = the smallest prime that, when written in binary, starts with the substring of n in binary.

Original entry on oeis.org

2, 2, 3, 17, 5, 13, 7, 17, 19, 41, 11, 97, 13, 29, 31, 67, 17, 37, 19, 41, 43, 89, 23, 97, 101, 53, 109, 113, 29, 61, 31, 131, 67, 137, 71, 73, 37, 307, 79, 163, 41, 337, 43, 89, 181, 373, 47, 97, 197, 101, 103, 211, 53, 109, 223, 113, 229, 233, 59, 241, 61, 251, 127, 257
Offset: 1

Views

Author

Leroy Quet, Aug 08 2009

Keywords

Comments

The argument used to prove that A018800(n) always exists applies here also. - N. J. A. Sloane, Nov 14 2014

Examples

			4 in binary is 100. Looking at the binary numbers that begin with 100: 100 = 4 in decimal is composite; 1000 = 8 in decimal is composite; 1001 = 9 in decimal is composite; 10000 = 16 in decimal is composite. But 10001 = 17 in decimal is prime. So a(4) = 17.
		

Crossrefs

A018800 is the base-10 analog.
Row n=1 of A262365. Cf. A108234 (number of new bits), A208241 (proper substring).

Programs

  • Maple
    A164022 := proc(n) dgs2 := convert(n,base,2) ; ldgs := nops(dgs2) ; for i from 1 do p := ithprime(i) ; if p >= n then pdgs := convert(p,base,2) ; if [op(nops(pdgs)+1-ldgs.. nops(pdgs),pdgs)] = dgs2 then RETURN( p) ; fi; fi; od: end: seq(A164022(n),n=1..120) ; # R. J. Mathar, Sep 13 2009
  • Mathematica
    With[{s = Map[IntegerDigits[#, 2] &, Prime@ Range[10^4]]}, Table[Block[{d = IntegerDigits[n, 2]}, FromDigits[#, 2] &@ SelectFirst[s, Take[#, UpTo@ Length@ d] == d &]], {n, 64}]] (* Michael De Vlieger, Sep 23 2017 *)

Extensions

Corrected terms a(1) and a(2) (with help from Ray Chandler) Leroy Quet, Aug 16 2009
Extended by R. J. Mathar, Sep 13 2009

A262366 a(n) is the n-th prime whose binary expansion begins with the binary expansion of n.

Original entry on oeis.org

2, 5, 13, 67, 43, 107, 127, 263, 307, 349, 373, 773, 839, 907, 991, 1063, 1109, 1201, 1277, 1321, 2713, 2819, 2963, 3119, 3229, 3371, 3517, 3691, 3779, 3943, 4051, 4217, 8461, 8719, 8963, 9241, 9497, 9767, 10039, 10303, 10613, 10799, 11159, 11317, 11657, 11923
Offset: 1

Views

Author

Alois P. Heinz, Sep 20 2015

Keywords

Crossrefs

Main diagonal of A262365.
Cf. A077345.

Programs

  • Maple
    u:= (h, t)-> select(isprime, [seq(h*2^t+k, k=0..2^t-1)]):
    A:= proc(n, k) local l, p;
          l:= proc() [] end; p:= proc() -1 end;
          while nops(l(k)) A(n$2):
    seq(a(n), n=1..60);
Showing 1-10 of 10 results.