A080165
Primes having initial digits "10" in binary representation.
Original entry on oeis.org
2, 5, 11, 17, 19, 23, 37, 41, 43, 47, 67, 71, 73, 79, 83, 89, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 521, 523, 541, 547, 557, 563
Offset: 1
A000040(15)=47 -> '101111' therefore 47 is a term.
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
Select[Prime[Range[1000]], IntegerDigits[#, 2][[;;2]] == {1, 0}&] (* Jean-François Alcover, Oct 25 2021 *)
-
pxnm1(n,p) = { forprime(x=2,n, p1 = x; while(p1>1, if(p1%2==0,p1/=2,p1 = p1*p-1;); if(p1 == 4,break); ); if(p1 == 4,print1(x" ")) ) }
A262365
A(n,k) is the n-th prime whose binary expansion begins with the binary expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
2, 2, 3, 3, 5, 5, 17, 7, 11, 7, 5, 19, 13, 17, 11, 13, 11, 37, 29, 19, 13, 7, 53, 23, 67, 31, 23, 17, 17, 29, 97, 41, 71, 53, 37, 19, 19, 67, 31, 101, 43, 73, 59, 41, 23, 41, 37, 71, 59, 103, 47, 79, 61, 43, 29, 11, 43, 73, 131, 61, 107, 83, 131, 97, 47, 31
Offset: 1
Square array A(n,k) begins:
: 2, 2, 3, 17, 5, 13, 7, 17, ...
: 3, 5, 7, 19, 11, 53, 29, 67, ...
: 5, 11, 13, 37, 23, 97, 31, 71, ...
: 7, 17, 29, 67, 41, 101, 59, 131, ...
: 11, 19, 31, 71, 43, 103, 61, 137, ...
: 13, 23, 53, 73, 47, 107, 113, 139, ...
: 17, 37, 59, 79, 83, 109, 127, 257, ...
: 19, 41, 61, 131, 89, 193, 227, 263, ...
-
u:= (h, t)-> select(isprime, [seq(h*2^t+k, k=0..2^t-1)]):
A:= proc(n, k) local l, p;
l:= proc() [] end; p:= proc() -1 end;
while nops(l(k))
-
nmax = 14;
col[k_] := col[k] = Module[{bk = IntegerDigits[k, 2], lk, pp = {}, coe = 1}, lbk = Length[bk]; While[Length[pp] < nmax, pp = Select[Prime[Range[ coe*nmax]], Quiet@Take[IntegerDigits[#, 2], lbk] == bk&]; coe++]; pp];
A[n_, k_] := col[k][[n]];
Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 25 2021 *)
A080166
Primes having initial digits "11" in binary representation.
Original entry on oeis.org
3, 7, 13, 29, 31, 53, 59, 61, 97, 101, 103, 107, 109, 113, 127, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 769, 773, 787, 797, 809, 811, 821
Offset: 1
A000040(16)=53 -> '110101' therefore 53 is a term.
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
Select[Prime[Range[200]],Take[IntegerDigits[#,2],2]=={1,1}&] (* Harvey P. Dale, Jul 30 2019 *)
-
pxnm1(n,p) = { forprime(x=2,n, p1 = x; while(p1>1, if(p1%2==0,p1/=2,p1 = p1*p-1;); if(p1 == 3,break); ); if(p1 == 3,print1(x" ")) ) }
A262284
Primes whose binary expansion begins 101.
Original entry on oeis.org
5, 11, 23, 41, 43, 47, 83, 89, 163, 167, 173, 179, 181, 191, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
lis:=[]; q:=5;
for i from 1 to 10 do for j from 1 to 2^i-1 do
if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
lis;
-
Select[Flatten[Table[FromDigits[#,2]&/@(Join[{1,0,1},#]&/@Tuples[{0,1},n]),{n,0,10}]],PrimeQ] (* Harvey P. Dale, Oct 17 2021 *)
A262285
Primes whose binary expansion begins 111.
Original entry on oeis.org
7, 29, 31, 59, 61, 113, 127, 227, 229, 233, 239, 241, 251, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
lis:=[]; q:=7;
for i from 1 to 10 do for j from 1 to 2^i-1 do
if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
lis;
-
Select[FromDigits[#,2]&/@(Join[{1,1,1},#]&/@Flatten[Table[Tuples[{0,1},n],{n,0,8}],1]),PrimeQ] (* or *) Select[Prime[Range[ 3,350]],Take[ IntegerDigits[ #,2],3]=={1,1,1}&] (* Harvey P. Dale, May 02 2021 *)
A262287
Primes whose binary expansion begins 110.
Original entry on oeis.org
13, 53, 97, 101, 103, 107, 109, 193, 197, 199, 211, 223, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
A262350
a(1) = 2. For n>1, let s denote the binary string of a(n-1) with the leftmost 1 and following consecutive 0's removed. Then a(n) is the smallest prime not yet present whose binary representation begins with s.
Original entry on oeis.org
2, 3, 5, 7, 13, 11, 29, 53, 43, 23, 31, 61, 59, 109, 181, 107, 173, 367, 223, 191, 127, 509, 1013, 4013, 3931, 3767, 13757, 11131, 2939, 1783, 3037, 1979, 3821, 3547, 1499, 1901, 877, 2927, 1759, 1471, 1789, 1531, 2029, 2011, 7901, 60887, 56239, 93887, 28351
Offset: 1
: 10 ... 2
: 11 ... 3
: 101 ... 5
: 111 ... 7
: 1101 ... 13
: 1011 ... 11
: 11101 ... 29
: 110101 ... 53
: 101011 ... 43
: 10111 ... 23
: 11111 ... 31
: 111101 ... 61
: 111011 ... 59
: 1101101 ... 109
: 10110101 ... 181
: 1101011 ... 107
: 10101101 ... 173
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
b:= proc() true end:
a:= proc(n) option remember; local h, k, ok, p, t;
if n=1 then p:=2
else h:= (k-> irem(k, 2^(ilog2(k))))(a(n-1)); p:= h;
ok:= isprime(p) and b(p);
for t while not ok do
for k to 2^t-1 while not ok do p:= h*2^t+k;
ok:= isprime(p) and b(p)
od
od
fi; b(p):= false; p
end:
seq(a(n), n=1..70);
Showing 1-7 of 7 results.
Comments