cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A262365 A(n,k) is the n-th prime whose binary expansion begins with the binary expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

2, 2, 3, 3, 5, 5, 17, 7, 11, 7, 5, 19, 13, 17, 11, 13, 11, 37, 29, 19, 13, 7, 53, 23, 67, 31, 23, 17, 17, 29, 97, 41, 71, 53, 37, 19, 19, 67, 31, 101, 43, 73, 59, 41, 23, 41, 37, 71, 59, 103, 47, 79, 61, 43, 29, 11, 43, 73, 131, 61, 107, 83, 131, 97, 47, 31
Offset: 1

Views

Author

Alois P. Heinz, Sep 20 2015

Keywords

Examples

			Square array A(n,k) begins:
:  2,  2,  3,  17,  5,  13,   7,  17, ...
:  3,  5,  7,  19, 11,  53,  29,  67, ...
:  5, 11, 13,  37, 23,  97,  31,  71, ...
:  7, 17, 29,  67, 41, 101,  59, 131, ...
: 11, 19, 31,  71, 43, 103,  61, 137, ...
: 13, 23, 53,  73, 47, 107, 113, 139, ...
: 17, 37, 59,  79, 83, 109, 127, 257, ...
: 19, 41, 61, 131, 89, 193, 227, 263, ...
		

Crossrefs

Columns k=1-7 give: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Row n=1 gives A164022.
Main diagonal gives A262366.

Programs

  • Maple
    u:= (h, t)-> select(isprime, [seq(h*2^t+k, k=0..2^t-1)]):
    A:= proc(n, k) local l, p;
          l:= proc() [] end; p:= proc() -1 end;
          while nops(l(k))
    				
  • Mathematica
    nmax = 14;
    col[k_] := col[k] = Module[{bk = IntegerDigits[k, 2], lk, pp = {}, coe = 1}, lbk = Length[bk]; While[Length[pp] < nmax, pp = Select[Prime[Range[ coe*nmax]], Quiet@Take[IntegerDigits[#, 2], lbk] == bk&]; coe++]; pp];
    A[n_, k_] := col[k][[n]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 25 2021 *)

A262284 Primes whose binary expansion begins 101.

Original entry on oeis.org

5, 11, 23, 41, 43, 47, 83, 89, 163, 167, 173, 179, 181, 191, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399
Offset: 1

Views

Author

N. J. A. Sloane, Sep 19 2015

Keywords

Crossrefs

Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Suggested by A262350.
Column k=5 of A262365.

Programs

  • Maple
    lis:=[]; q:=5;
    for i from 1 to 10 do for j from 1 to 2^i-1 do
    if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
    lis;
  • Mathematica
    Select[Flatten[Table[FromDigits[#,2]&/@(Join[{1,0,1},#]&/@Tuples[{0,1},n]),{n,0,10}]],PrimeQ] (* Harvey P. Dale, Oct 17 2021 *)

A262285 Primes whose binary expansion begins 111.

Original entry on oeis.org

7, 29, 31, 59, 61, 113, 127, 227, 229, 233, 239, 241, 251, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873
Offset: 1

Views

Author

N. J. A. Sloane, Sep 19 2015

Keywords

Crossrefs

Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Suggested by A262350.
Column k=7 of A262365.

Programs

  • Maple
    lis:=[]; q:=7;
    for i from 1 to 10 do for j from 1 to 2^i-1 do
    if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
    lis;
  • Mathematica
    Select[FromDigits[#,2]&/@(Join[{1,1,1},#]&/@Flatten[Table[Tuples[{0,1},n],{n,0,8}],1]),PrimeQ] (* or *) Select[Prime[Range[ 3,350]],Take[ IntegerDigits[ #,2],3]=={1,1,1}&] (* Harvey P. Dale, May 02 2021 *)

A262286 Primes whose binary expansion begins 100.

Original entry on oeis.org

17, 19, 37, 67, 71, 73, 79, 131, 137, 139, 149, 151, 157, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093
Offset: 1

Views

Author

N. J. A. Sloane, Sep 19 2015

Keywords

Crossrefs

Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Suggested by A262350.
Column k=4 of A262365.

Programs

  • Maple
    lis:=[]; q:=4;
    for i from 1 to 10 do for j from 1 to 2^i-1 do
    if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
    lis;

A262287 Primes whose binary expansion begins 110.

Original entry on oeis.org

13, 53, 97, 101, 103, 107, 109, 193, 197, 199, 211, 223, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627
Offset: 1

Views

Author

N. J. A. Sloane, Sep 19 2015

Keywords

Crossrefs

Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Suggested by A262350.
Column k=6 of A262365.

A262283 a(1)=2. For n>1, let s denote the digit-string of a(n-1) with the first digit omitted. Then a(n) is the smallest prime not yet present which starts with s.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 31, 17, 71, 19, 97, 73, 37, 79, 907, 701, 101, 103, 307, 709, 911, 113, 131, 311, 1103, 1031, 313, 137, 373, 733, 331, 317, 173, 739, 397, 971, 719, 191, 919, 193, 937, 379, 797, 977, 773, 7307, 3079, 7901, 9011, 1109, 109, 929, 29, 941, 41
Offset: 1

Views

Author

N. J. A. Sloane, Sep 18 2015

Keywords

Comments

If a(n-1) has a single digit then a(n) is simply the smallest missing prime.
Leading zeros in s are ignored.
The sequence is infinite, since there infinitely many primes that start with s (see the comments in A080165).
The data in the b-file suggests that there are infinitely many primes that do not appear. Hoever, at present that is no proof that even one prime (23, say) never appears. - N. J. A. Sloane, Sep 20 2015
Alois P. Heinz points out that a(n) = A262282(n+29) starting at the 103rd term. - N. J. A. Sloane, Sep 19 2015

Examples

			a(1)=2, so s is the empty string, so a(2) is the smallest missing prime, 3. After a(6)=13, s=3, so a(7) is the smallest missing prime that starts with 3, which is 31.
		

Crossrefs

Programs

  • Haskell
    import Data.List (isPrefixOf, delete)
    a262283 n = a262283_list !! (n-1)
    a262283_list = 2 : f "" (map show $ tail a000040_list) where
       f xs pss = (read ys :: Integer) :
                  f (dropWhile (== '0') ys') (delete ys pss)
                  where ys@(_:ys') = head $ filter (isPrefixOf xs) pss
    -- Reinhard Zumkeller, Sep 19 2015

Extensions

More terms from Alois P. Heinz, Sep 18 2015
Showing 1-6 of 6 results.