A262365
A(n,k) is the n-th prime whose binary expansion begins with the binary expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
2, 2, 3, 3, 5, 5, 17, 7, 11, 7, 5, 19, 13, 17, 11, 13, 11, 37, 29, 19, 13, 7, 53, 23, 67, 31, 23, 17, 17, 29, 97, 41, 71, 53, 37, 19, 19, 67, 31, 101, 43, 73, 59, 41, 23, 41, 37, 71, 59, 103, 47, 79, 61, 43, 29, 11, 43, 73, 131, 61, 107, 83, 131, 97, 47, 31
Offset: 1
Square array A(n,k) begins:
: 2, 2, 3, 17, 5, 13, 7, 17, ...
: 3, 5, 7, 19, 11, 53, 29, 67, ...
: 5, 11, 13, 37, 23, 97, 31, 71, ...
: 7, 17, 29, 67, 41, 101, 59, 131, ...
: 11, 19, 31, 71, 43, 103, 61, 137, ...
: 13, 23, 53, 73, 47, 107, 113, 139, ...
: 17, 37, 59, 79, 83, 109, 127, 257, ...
: 19, 41, 61, 131, 89, 193, 227, 263, ...
-
u:= (h, t)-> select(isprime, [seq(h*2^t+k, k=0..2^t-1)]):
A:= proc(n, k) local l, p;
l:= proc() [] end; p:= proc() -1 end;
while nops(l(k))
-
nmax = 14;
col[k_] := col[k] = Module[{bk = IntegerDigits[k, 2], lk, pp = {}, coe = 1}, lbk = Length[bk]; While[Length[pp] < nmax, pp = Select[Prime[Range[ coe*nmax]], Quiet@Take[IntegerDigits[#, 2], lbk] == bk&]; coe++]; pp];
A[n_, k_] := col[k][[n]];
Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 25 2021 *)
A262284
Primes whose binary expansion begins 101.
Original entry on oeis.org
5, 11, 23, 41, 43, 47, 83, 89, 163, 167, 173, 179, 181, 191, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
lis:=[]; q:=5;
for i from 1 to 10 do for j from 1 to 2^i-1 do
if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
lis;
-
Select[Flatten[Table[FromDigits[#,2]&/@(Join[{1,0,1},#]&/@Tuples[{0,1},n]),{n,0,10}]],PrimeQ] (* Harvey P. Dale, Oct 17 2021 *)
A262285
Primes whose binary expansion begins 111.
Original entry on oeis.org
7, 29, 31, 59, 61, 113, 127, 227, 229, 233, 239, 241, 251, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
lis:=[]; q:=7;
for i from 1 to 10 do for j from 1 to 2^i-1 do
if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
lis;
-
Select[FromDigits[#,2]&/@(Join[{1,1,1},#]&/@Flatten[Table[Tuples[{0,1},n],{n,0,8}],1]),PrimeQ] (* or *) Select[Prime[Range[ 3,350]],Take[ IntegerDigits[ #,2],3]=={1,1,1}&] (* Harvey P. Dale, May 02 2021 *)
A262286
Primes whose binary expansion begins 100.
Original entry on oeis.org
17, 19, 37, 67, 71, 73, 79, 131, 137, 139, 149, 151, 157, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
A262287
Primes whose binary expansion begins 110.
Original entry on oeis.org
13, 53, 97, 101, 103, 107, 109, 193, 197, 199, 211, 223, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
A262283
a(1)=2. For n>1, let s denote the digit-string of a(n-1) with the first digit omitted. Then a(n) is the smallest prime not yet present which starts with s.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 31, 17, 71, 19, 97, 73, 37, 79, 907, 701, 101, 103, 307, 709, 911, 113, 131, 311, 1103, 1031, 313, 137, 373, 733, 331, 317, 173, 739, 397, 971, 719, 191, 919, 193, 937, 379, 797, 977, 773, 7307, 3079, 7901, 9011, 1109, 109, 929, 29, 941, 41
Offset: 1
a(1)=2, so s is the empty string, so a(2) is the smallest missing prime, 3. After a(6)=13, s=3, so a(7) is the smallest missing prime that starts with 3, which is 31.
-
import Data.List (isPrefixOf, delete)
a262283 n = a262283_list !! (n-1)
a262283_list = 2 : f "" (map show $ tail a000040_list) where
f xs pss = (read ys :: Integer) :
f (dropWhile (== '0') ys') (delete ys pss)
where ys@(_:ys') = head $ filter (isPrefixOf xs) pss
-- Reinhard Zumkeller, Sep 19 2015
Showing 1-6 of 6 results.
Comments