A095765
Number of primes in range [2^n+1, 2^(n+1)] whose binary expansion begins '10' (A080165).
Original entry on oeis.org
0, 1, 1, 3, 4, 6, 12, 22, 38, 70, 130, 237, 441, 825, 1539, 2897, 5453, 10335, 19556, 37243, 70938, 135555, 259586, 497790, 956126, 1839597, 3544827, 6839282, 13212389, 25552386, 49472951, 95883938, 186011076, 361177503, 701906519
Offset: 1
Table showing the derivation of the initial terms:
n 2^n+1 2^(n+1) a(n) primes starting '10' in binary
1 3 4 0 -
2 5 8 1 5 = 101_2
3 9 16 1 11 = 1011_2
4 17 32 3 17 = 10001_2, 19 = 10011_2, 23 = 10111_2
Edited, restoring meaning of name, by
Peter Munn, Jun 27 2023
A262365
A(n,k) is the n-th prime whose binary expansion begins with the binary expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
2, 2, 3, 3, 5, 5, 17, 7, 11, 7, 5, 19, 13, 17, 11, 13, 11, 37, 29, 19, 13, 7, 53, 23, 67, 31, 23, 17, 17, 29, 97, 41, 71, 53, 37, 19, 19, 67, 31, 101, 43, 73, 59, 41, 23, 41, 37, 71, 59, 103, 47, 79, 61, 43, 29, 11, 43, 73, 131, 61, 107, 83, 131, 97, 47, 31
Offset: 1
Square array A(n,k) begins:
: 2, 2, 3, 17, 5, 13, 7, 17, ...
: 3, 5, 7, 19, 11, 53, 29, 67, ...
: 5, 11, 13, 37, 23, 97, 31, 71, ...
: 7, 17, 29, 67, 41, 101, 59, 131, ...
: 11, 19, 31, 71, 43, 103, 61, 137, ...
: 13, 23, 53, 73, 47, 107, 113, 139, ...
: 17, 37, 59, 79, 83, 109, 127, 257, ...
: 19, 41, 61, 131, 89, 193, 227, 263, ...
-
u:= (h, t)-> select(isprime, [seq(h*2^t+k, k=0..2^t-1)]):
A:= proc(n, k) local l, p;
l:= proc() [] end; p:= proc() -1 end;
while nops(l(k))
-
nmax = 14;
col[k_] := col[k] = Module[{bk = IntegerDigits[k, 2], lk, pp = {}, coe = 1}, lbk = Length[bk]; While[Length[pp] < nmax, pp = Select[Prime[Range[ coe*nmax]], Quiet@Take[IntegerDigits[#, 2], lbk] == bk&]; coe++]; pp];
A[n_, k_] := col[k][[n]];
Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 25 2021 *)
A080166
Primes having initial digits "11" in binary representation.
Original entry on oeis.org
3, 7, 13, 29, 31, 53, 59, 61, 97, 101, 103, 107, 109, 113, 127, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 769, 773, 787, 797, 809, 811, 821
Offset: 1
A000040(16)=53 -> '110101' therefore 53 is a term.
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
Select[Prime[Range[200]],Take[IntegerDigits[#,2],2]=={1,1}&] (* Harvey P. Dale, Jul 30 2019 *)
-
pxnm1(n,p) = { forprime(x=2,n, p1 = x; while(p1>1, if(p1%2==0,p1/=2,p1 = p1*p-1;); if(p1 == 3,break); ); if(p1 == 3,print1(x" ")) ) }
A262284
Primes whose binary expansion begins 101.
Original entry on oeis.org
5, 11, 23, 41, 43, 47, 83, 89, 163, 167, 173, 179, 181, 191, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
lis:=[]; q:=5;
for i from 1 to 10 do for j from 1 to 2^i-1 do
if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
lis;
-
Select[Flatten[Table[FromDigits[#,2]&/@(Join[{1,0,1},#]&/@Tuples[{0,1},n]),{n,0,10}]],PrimeQ] (* Harvey P. Dale, Oct 17 2021 *)
A262285
Primes whose binary expansion begins 111.
Original entry on oeis.org
7, 29, 31, 59, 61, 113, 127, 227, 229, 233, 239, 241, 251, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
lis:=[]; q:=7;
for i from 1 to 10 do for j from 1 to 2^i-1 do
if isprime(q*2^i+j) then lis:=[op(lis),q*2^i+j]; fi; od: od:
lis;
-
Select[FromDigits[#,2]&/@(Join[{1,1,1},#]&/@Flatten[Table[Tuples[{0,1},n],{n,0,8}],1]),PrimeQ] (* or *) Select[Prime[Range[ 3,350]],Take[ IntegerDigits[ #,2],3]=={1,1,1}&] (* Harvey P. Dale, May 02 2021 *)
A262286
Primes whose binary expansion begins 100.
Original entry on oeis.org
17, 19, 37, 67, 71, 73, 79, 131, 137, 139, 149, 151, 157, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
A262287
Primes whose binary expansion begins 110.
Original entry on oeis.org
13, 53, 97, 101, 103, 107, 109, 193, 197, 199, 211, 223, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627
Offset: 1
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
A262350
a(1) = 2. For n>1, let s denote the binary string of a(n-1) with the leftmost 1 and following consecutive 0's removed. Then a(n) is the smallest prime not yet present whose binary representation begins with s.
Original entry on oeis.org
2, 3, 5, 7, 13, 11, 29, 53, 43, 23, 31, 61, 59, 109, 181, 107, 173, 367, 223, 191, 127, 509, 1013, 4013, 3931, 3767, 13757, 11131, 2939, 1783, 3037, 1979, 3821, 3547, 1499, 1901, 877, 2927, 1759, 1471, 1789, 1531, 2029, 2011, 7901, 60887, 56239, 93887, 28351
Offset: 1
: 10 ... 2
: 11 ... 3
: 101 ... 5
: 111 ... 7
: 1101 ... 13
: 1011 ... 11
: 11101 ... 29
: 110101 ... 53
: 101011 ... 43
: 10111 ... 23
: 11111 ... 31
: 111101 ... 61
: 111011 ... 59
: 1101101 ... 109
: 10110101 ... 181
: 1101011 ... 107
: 10101101 ... 173
Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7:
A000040,
A080165,
A080166,
A262286,
A262284,
A262287,
A262285.
-
b:= proc() true end:
a:= proc(n) option remember; local h, k, ok, p, t;
if n=1 then p:=2
else h:= (k-> irem(k, 2^(ilog2(k))))(a(n-1)); p:= h;
ok:= isprime(p) and b(p);
for t while not ok do
for k to 2^t-1 while not ok do p:= h*2^t+k;
ok:= isprime(p) and b(p)
od
od
fi; b(p):= false; p
end:
seq(a(n), n=1..70);
A262283
a(1)=2. For n>1, let s denote the digit-string of a(n-1) with the first digit omitted. Then a(n) is the smallest prime not yet present which starts with s.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 31, 17, 71, 19, 97, 73, 37, 79, 907, 701, 101, 103, 307, 709, 911, 113, 131, 311, 1103, 1031, 313, 137, 373, 733, 331, 317, 173, 739, 397, 971, 719, 191, 919, 193, 937, 379, 797, 977, 773, 7307, 3079, 7901, 9011, 1109, 109, 929, 29, 941, 41
Offset: 1
a(1)=2, so s is the empty string, so a(2) is the smallest missing prime, 3. After a(6)=13, s=3, so a(7) is the smallest missing prime that starts with 3, which is 31.
-
import Data.List (isPrefixOf, delete)
a262283 n = a262283_list !! (n-1)
a262283_list = 2 : f "" (map show $ tail a000040_list) where
f xs pss = (read ys :: Integer) :
f (dropWhile (== '0') ys') (delete ys pss)
where ys@(_:ys') = head $ filter (isPrefixOf xs) pss
-- Reinhard Zumkeller, Sep 19 2015
A080167
Primes beginning with '10' and ending with '01' in binary representation.
Original entry on oeis.org
5, 17, 37, 41, 73, 89, 137, 149, 157, 173, 181, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 521, 541, 557, 569, 577, 593, 601, 613, 617, 641, 653, 661, 673, 677, 701, 709, 733, 757, 761, 1033, 1049, 1061, 1069, 1093, 1097, 1109, 1117, 1129, 1153
Offset: 1
A000040(12)=37 -> '100101' therefore 37 is a term.
-
Select[Prime[Range[200]],Take[IntegerDigits[#,2],2]=={1,0}&&Take[ IntegerDigits[#,2],-2]=={0,1}&] (* Harvey P. Dale, May 10 2015 *)
Showing 1-10 of 11 results.
Comments