cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262382 Numerators of a semi-convergent series leading to the first Stieltjes constant gamma_1.

Original entry on oeis.org

-1, 11, -137, 121, -7129, 57844301, -1145993, 4325053069, -1848652896341, 48069674759189, -1464950131199, 105020512675255609, -22404210159235777, 1060366791013567384441, -15899753637685210768473787, 2241672100026760127622163469, -8138835628210212414423299
Offset: 1

Views

Author

Keywords

Comments

gamma_1 = - 1/12 + 11/720 - 137/15120 + 121/11200 - 7129/332640 + 57844301/908107200 - ..., see formulas (46)-(47) in the reference below.

Examples

			Numerators of -1/12, 11/720, -137/15120, 121/11200, -7129/332640, 57844301/908107200, ...
		

Crossrefs

Cf. A001620, A002206, A195189, A075266, A262235, A001067, A006953, A082633, A262383 (denominators of this series), A086279, A086280, A262387.

Programs

  • Maple
    a := n -> numer(Zeta(1 - 2*n)*(Psi(2*n) + gamma)):
    seq(a(n), n=1..16); # Peter Luschny, Apr 19 2018
  • Mathematica
    a[n_] := Numerator[-BernoulliB[2*n]*HarmonicNumber[2*n - 1]/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = numerator(-bernfrac(2*n)*sum(k=1,2*n-1,1/k)/(2*n)); \\ Michel Marcus, Sep 23 2015

Formula

a(n) = numerator(-B_{2n}*H_{2n-1}/(2n)), where B_n and H_n are Bernoulli and harmonic numbers respectively.
a(n) = numerator(Zeta(1 - 2*n)*(Psi(2*n) + gamma)), where gamma is Euler's gamma. - Peter Luschny, Apr 19 2018