cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262396 Product of the sums and differences of the square roots of the first n positive integers, combined in all possible ways.

Original entry on oeis.org

1, -1, 1, 64, 4096, 23323703841, 63703464216016403230349121, 316699666163357097153212433469030615484754548657341071360000
Offset: 0

Views

Author

Mark Bradley, Sep 21 2015

Keywords

Comments

The series increases rapidly and the next number in the sequence has 135 decimal digits. Each element for n>1 is necessarily both an integer and a perfect square, the square roots being 1, 8, 64, 152721, 7981444995489, 562760753929551396141111705600, ...

Examples

			a(0) = 1 = (empty product).
a(1) = -1 = (sqrt(1)) * (-sqrt(1)).
a(2) = 1 = (1+sqrt(2)) * (1-sqrt(2)) * (-1+sqrt(2)) * (-1-sqrt(2)).
a(3) = 64 = (1+sqrt(2)+sqrt(3)) * (1+sqrt(2)-sqrt(3)) * (1-sqrt(2)+sqrt(3)) * (1-sqrt(2)-sqrt(3)) * (-1+sqrt(2)+sqrt(3)) * (-1+sqrt(2)-sqrt(3)) * (-1-sqrt(2)+sqrt(3)) * (-1-sqrt(2)-sqrt(3)).
		

Crossrefs

Cf. A354913.

Programs

  • Maple
    s:= proc(n) option remember; `if`(n<2, [1, -1][1..2*n],
           map(x-> [x+sqrt(n), x-sqrt(n)][], s(n-1)))
        end:
    a:= n-> expand(mul(t, t=s(n))):
    seq(a(n), n=0..7);  # Alois P. Heinz, Sep 21 2015
  • Mathematica
    s[n_] := s[n] = If[n < 2, {1, -1}[[1 ;; 2n]], {# + Sqrt[n], # - Sqrt[n]}& /@ s[n - 1]];
    a[n_] := If[n == 0, 1, Times @@ Flatten[s[n], n - 1] // Expand];
    a /@ Range[0, 7] (* Jean-François Alcover, Nov 24 2020, after Alois P. Heinz *)