A262445 Number of exact 3-colored partitions such that no adjacent parts have the same color.
0, 0, 0, 6, 24, 72, 186, 438, 990, 2142, 4560, 9492, 19620, 40068, 81534, 164892, 332808, 669528, 1345554, 2699448, 5412636, 10843038, 21714972, 43467342, 86995428, 174069306, 348265164, 696694692, 1393652298, 2787646380, 5575837836, 11152384044, 22305891948, 44613248352, 89228806704, 178460625402, 356925987924
Offset: 0
Keywords
Examples
a(3)=6 because there are three partitions of 3 and there are no ways to color [3] or [2,1] but there are six ways to color [1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Ran Pan, A note on enumerating colored integer partitions, arXiv:1509.06107 [math.CO], 2015.
- Ran Pan, Exercise S, Project P.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))) end: a:= n-> `if`(n=0, 0, b(n$2, 2)/2*3-6*b(n$2, 1)+3): seq(a(n), n=0..40); # Alois P. Heinz, Sep 23 2015
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]]; a[n_] := If[n == 0, 0, b[n, n, 2]/2*3 - 6*b[n, n, 1] + 3]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)
Formula
G.f.: 3/2*Product_{k>=1} (1/(1-2*x^k)) - 6*Product_{k>=1} (1/(1-x^k)) + 3/(1-x) + 3/2.
a(n) = 6 * A262495(n,3). - Alois P. Heinz, Sep 24 2015
Comments