A262460 Lexicographically earliest sequence of distinct terms such that the hexadecimal representations of two consecutive terms overlap.
1, 16, 17, 18, 2, 32, 34, 33, 19, 3, 35, 48, 51, 49, 20, 4, 36, 50, 37, 5, 21, 65, 22, 6, 38, 66, 39, 7, 23, 81, 24, 8, 40, 82, 41, 9, 25, 97, 26, 10, 42, 98, 43, 11, 27, 113, 28, 12, 44, 114, 45, 13, 29, 129, 30, 14, 46, 130, 47, 15, 31, 145, 57, 67, 52, 64
Offset: 1
Examples
Table of initial terms: the HEX column gives the hexadecimal representation with aligned overlapping digits. . n | a(n) | HEX n | a(n) | HEX n | a(n) | HEX . ----+------+------- ----+------+------- ----+------+------- . 1 | 1 | 1 25 | 38 | 26 49 | 44 | 2C . 2 | 16 | 10 26 | 66 | 42 50 | 114 | 72 . 3 | 17 | 11 27 | 39 | 27 51 | 45 | 2D . 4 | 18 | 12 28 | 7 | 7 52 | 13 | D . 5 | 2 | 2 29 | 23 | 17 53 | 29 | 1D . 6 | 32 | 20 30 | 81 | 51 54 | 129 | 81 . 7 | 34 | 22 31 | 24 | 18 55 | 30 | 1E . 8 | 33 | 21 32 | 8 | 8 56 | 14 | E . 9 | 19 | 13 33 | 40 | 28 57 | 46 | 2E . 10 | 3 | 3 34 | 82 | 52 58 | 130 | 82 . 11 | 35 | 23 35 | 41 | 29 59 | 47 | 2F . 12 | 48 | 30 36 | 9 | 9 60 | 15 | F . 13 | 51 | 33 37 | 25 | 19 61 | 31 | 1F . 14 | 49 | 31 38 | 97 | 61 62 | 145 | 91 . 15 | 20 | 14 39 | 26 | 1A 63 | 57 | 39 . 16 | 4 | 4 40 | 10 | A 64 | 67 | 43 . 17 | 36 | 24 41 | 42 | 2A 65 | 52 | 34 . 18 | 50 | 32 42 | 98 | 62 66 | 64 | 40 . 19 | 37 | 25 43 | 43 | 2B 67 | 68 | 44 . 20 | 5 | 5 44 | 11 | B 68 | 69 | 45 . 21 | 21 | 15 45 | 27 | 1B 69 | 80 | 50 . 22 | 65 | 41 46 | 113 | 71 70 | 53 | 35 . 23 | 22 | 16 47 | 28 | 1C 71 | 83 | 53 . 24 | 6 | 6 48 | 12 | C 72 | 54 | 36
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Hexadecimal
- Wikipedia, Hexadecimal
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Haskell
import Data.List (inits, tails, intersect, delete, genericIndex) a262460 n = genericIndex a262460_list (n - 1) a262460_list = 1 : f [1] (drop 2 a262437_tabf) where f xs tss = g tss where g (ys:yss) | null (intersect its $ tail $ inits ys) && null (intersect tis $ init $ tails ys) = g yss | otherwise = (foldr (\t v -> 16 * v + t) 0 ys) : f ys (delete ys tss) its = init $ tails xs; tis = tail $ inits xs
Comments