cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262481 Numbers m having in binary representation exactly lpf(m) ones, where lpf = least prime factor = A020639; a(1) = 1.

Original entry on oeis.org

1, 6, 10, 12, 18, 20, 21, 24, 34, 36, 40, 48, 55, 66, 68, 69, 72, 80, 81, 96, 115, 130, 132, 136, 144, 155, 160, 185, 192, 205, 258, 260, 261, 264, 272, 273, 288, 295, 320, 321, 355, 384, 395, 425, 514, 516, 520, 528, 535, 544, 565, 576, 595, 623, 625, 637
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 24 2015

Keywords

Examples

			.   n | a(n) | A007088(a(n)) | factorization
. ----+------+---------------+--------------
.   1 |    1 |            1  |   1
.   2 |    6 |          110  |   2 * 3
.   3 |   10 |         1010  |   2 * 5
.   4 |   12 |         1100  |   2^2 * 3
.   5 |   18 |        10010  |   2 * 3^2
.   6 |   20 |        10100  |   2^2 * 5
.   7 |   21 |        10101  |   3 * 7
.   8 |   24 |        11000  |   2^3 * 3
.   9 |   34 |       100010  |   2 * 17
.  10 |   36 |       100100  |   2^2 * 3^2
.  11 |   40 |       101000  |   2^3 * 5
.  12 |   48 |       110000  |   2^4 * 3
.  13 |   55 |       110111  |   5 * 11
.  14 |   66 |      1000010  |   2 * 3 * 11
.  15 |   68 |      1000100  |   2^2 * 17
.  16 |   69 |      1000101  |   3 * 23
.  17 |   72 |      1001000  |   2^3 * 3^2
.  18 |   80 |      1010000  |   2^4 * 5
.  19 |   81 |      1010001  |   3^4
.  20 |   96 |      1100000  |   2^5 * 3
.  21 |  115 |      1110011  |   5 * 23
.  22 |  130 |     10000010  |   2 * 5 * 13
.  23 |  132 |     10000100  |   2^2 * 3 * 11
.  24 |  136 |     10001000  |   2^3 * 17
.  25 |  144 |     10010000  |   2^4 * 3^2  .
		

Crossrefs

Subsequence of A052294.

Programs

  • Haskell
    a262481 n = a262481_list !! (n-1)
    a262481_list = filter (\x -> a000120 x == a020639 x) [1..]
    
  • Mathematica
    Select[Range[640], FactorInteger[#][[1, 1]] == DigitCount[#, 2, 1] &] (* Amiram Eldar, Jul 24 2023 *)
  • PARI
    isok(n) = (n==1) || (hammingweight(n) == factor(n)[1,1]); \\ Michel Marcus, Sep 29 2015

Formula

A000120(a(n)) = A020639(a(n)).