A262491 The index of the first of two consecutive positive triangular numbers (A000217) the sum of which is equal to the sum of eleven consecutive positive triangular numbers.
43, 120, 549, 3783, 17214, 47629, 216688, 1490884, 6782665, 18766098, 85374915, 587404905, 2672353188, 7393795375, 33637500214, 231436042078, 1052900373799, 2913136612044, 13253089709793, 91185213174219, 414840074924010, 1147768431350353, 5221683708158620
Offset: 1
Examples
43 is in the sequence because T(43)+T(44) = 946+990 = 1936 = 91+...+276 = T(13)+...+T(23), where T(k) is the k-th triangular number.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,394,-394,0,0,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,0,0,394,-394,0,0,-1,1},{43,120,549,3783,17214,47629,216688,1490884,6782665},30] (* Harvey P. Dale, May 17 2020 *)
-
PARI
Vec(-x*(10*x^8+33*x^6+77*x^5-3511*x^4+3234*x^3+429*x^2+77*x+43)/((x-1)*(x^8-394*x^4+1)) + O(x^30))
Formula
G.f.: -x*(10*x^8+33*x^6+77*x^5-3511*x^4+3234*x^3+429*x^2+77*x+43) / ((x-1)*(x^8-394*x^4+1)).
Comments