A262495 Number T(n,k) of partitions of n into parts of exactly k sorts which are introduced in ascending order such that sorts of adjacent parts are different; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 6, 12, 7, 1, 0, 1, 10, 31, 33, 11, 1, 0, 1, 14, 73, 130, 77, 16, 1, 0, 1, 21, 165, 464, 438, 157, 22, 1, 0, 1, 29, 357, 1558, 2216, 1223, 289, 29, 1, 0, 1, 41, 760, 5039, 10423, 8331, 2957, 492, 37, 1
Offset: 0
Examples
T(3,1) = 1: 3a. T(3,2) = 2: 2a1b, 1a1b1a. T(3,3) = 1: 1a1b1c. T(5,3) = 12: 3a1b1c, 2a2b1c, 2a1b1a1c, 2a1b1c1a, 2a1b1c1b, 1a1b1a1b1c, 1a1b1a1c1a, 1a1b1a1c1b, 1a1b1c1a1b, 1a1b1c1a1c, 1a1b1c1b1a, 1a1b1c1b1c. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 2, 1; 0, 1, 4, 4, 1; 0, 1, 6, 12, 7, 1; 0, 1, 10, 31, 33, 11, 1; 0, 1, 14, 73, 130, 77, 16, 1; 0, 1, 21, 165, 464, 438, 157, 22, 1; 0, 1, 29, 357, 1558, 2216, 1223, 289, 29, 1; 0, 1, 41, 760, 5039, 10423, 8331, 2957, 492, 37, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1), b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))) end: A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))): T:= (n, k)-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n-1), b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]; A[n_, k_] := If[n == 0, 1, If[k<2, k, k*b[n, n, k-1]]]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2017, translated from Maple *)