A262496 Number of partitions of n into parts of sorts {1, 2, ... } which are introduced in ascending order such that sorts of adjacent parts are different.
1, 1, 2, 4, 10, 27, 87, 312, 1269, 5703, 28082, 149643, 855938, 5217753, 33712046, 229799508, 1646314498, 12355371024, 96861186897, 791258791159, 6720627161903, 59234364141343, 540812222291531, 5106663817387466, 49798678281320763, 500857393909589995
Offset: 0
Keywords
Examples
a(3) = 4: 3a, 2a1b, 1a1b1a, 1a1b1c (in this example the sorts are labeled a, b, c).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1), b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))) end: A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))): T:= (n, k)-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k): a:= n-> add(T(n, k), k=0..n): seq(a(n), n=0..30);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n==0 || i==1, k^(n-1), b[n, i-1, k] + If[i > n, 0, k*b[n-i, i, k]]]; A[n_, k_] := If[n==0, 1, If[k<2, k, k*b[n, n, k - 1]]]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)