cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262503 a(n) = largest k such that A155043(k) = n.

Original entry on oeis.org

0, 2, 6, 12, 18, 22, 30, 34, 42, 48, 60, 72, 84, 96, 108, 120, 132, 140, 112, 116, 126, 124, 130, 138, 150, 156, 168, 180, 176, 184, 192, 204, 216, 228, 240, 248, 264, 280, 250, 258, 270, 288, 296, 312, 306, 320, 328, 340, 352, 364, 372, 354, 358, 368, 384, 396, 420, 402, 414, 418, 432, 450, 468, 480, 504, 520, 540, 560, 572, 580, 594, 612, 610, 618, 622, 628, 648, 672, 592
Offset: 0

Views

Author

Antti Karttunen, Sep 24 2015

Keywords

Comments

The first odd terms occur as a(121) = 1089, a(123) = 1093, a(349) = 3253, a(717) = 7581, a(807) = 8685, a(1225) = 13689, etc.

Crossrefs

Cf. A261089 (gives the first occurrence of n in A155043).
Cf. A262507 (gives the number of times n occurs in A155043).

Programs

  • Mathematica
    lim = 80; a[0] = 0; a[n_] := a[n] = 1 + a[n - DivisorSigma[0, n]]; t = Table[a@ n, {n, 0, 12 lim}]; Last@ Flatten@ Position[t, #] - 1 & /@ Range[0, lim] (* Uses the product of a limit and an arbitrary coefficient (12) based on observation of output for low values (n < 500). This might need to be adjusted for large n to give correct values of a(n). - Michael De Vlieger, Sep 29 2015 *) (* Note: one really should use a general safe limit, like A262502(n+2) I use in my Scheme-program. - Antti Karttunen, Sep 29 2015 *)
  • PARI
    allocatemem(123456789);
    uplim = 2162160; \\ = A002182(41).
    v155043 = vector(uplim);
    v155043[1] = 1; v155043[2] = 1;
    for(i=3, uplim, v155043[i] = 1 + v155043[i-numdiv(i)]);
    A155043 = n -> if(!n,n,v155043[n]);
    uplim2 = 110880; \\ = A002182(30).
    v262503 = vector(uplim2);
    for(i=1, uplim, if(v155043[i] <= uplim2, v262503[v155043[i]] = i));
    A262503 = n -> if(!n,n,v262503[n]);
    for(n=0, uplim2, write("b262503.txt", n, " ", A262503(n)));
    
  • Scheme
    (define (A262503 n) (let loop ((k (A262502 (+ 2 n)))) (if (= (A155043 k) n) k (loop (- k 1)))))

Formula

Other identities and observations. For all n >= 0:
A262502(n+2) > a(n). [Not rigorously proved, but empirical evidence and common sense agrees.]