A262668 Numbers n such that n-19, n-1, n+1 and n+19 are consecutive primes.
20982, 28182, 51768, 57222, 76422, 87720, 90678, 104850, 108108, 110730, 141180, 199602, 227112, 248118, 264600, 268842, 304392, 304458, 320082, 322920, 330018, 382728, 401670, 414432, 429972, 450258, 467082, 489408, 520548, 535608, 540120
Offset: 1
Keywords
Examples
20982 is the average of the four consecutive primes 20963, 20981, 20983, 21001. 28182 is the average of the four consecutive primes 28163, 28181, 28183, 28201.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Twin Primes
Programs
-
Mathematica
Select[Range[6, 600000, 6], And[AllTrue[{# - 1, # + 1}, PrimeQ], NextPrime[# - 1, -1] == # - 19, NextPrime[# + 1] == # + 19] &] (* Michael De Vlieger, Sep 27 2015, Version 10 *) Select[Prime@Range@60000, NextPrime[#, {1, 2, 3}] == {18, 20, 38} + # &] + 19 (* Vincenzo Librandi, Oct 10 2015 *) Mean/@Select[Partition[Prime[Range[50000]],4,1],Differences[#]=={18,2,18}&] (* Harvey P. Dale, Jan 16 2019 *)
-
Python
from sympy import isprime,prevprime,nextprime for i in range(0,1000001,6): if isprime(i-1) and isprime(i+1): if prevprime(i-1) == i-19 and nextprime(i+1) == i+19 : print(i,end=', ')
Comments