A262705 Triangle: Newton expansion of C(n,m)^4, read by rows.
1, 0, 1, 0, 14, 1, 0, 36, 78, 1, 0, 24, 978, 252, 1, 0, 0, 4320, 8730, 620, 1, 0, 0, 8460, 103820, 46890, 1290, 1, 0, 0, 7560, 581700, 1159340, 185430, 2394, 1, 0, 0, 2520, 1767360, 13387570, 8314880, 595476, 4088, 1, 0, 0, 0, 3087000, 85806000, 170429490, 44341584, 1642788, 6552, 1
Offset: 0
Examples
Triangle starts: [1]; [0, 1]; [0, 14, 1]; [0, 36, 78, 1]; [0, 24, 978, 252, 1]; [0, 0, 4320, 8730, 620, 1]; [0, 0, 8460, 103820, 46890, 1290, 1];
Links
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
Crossrefs
Programs
-
Magma
[&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^4: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
-
Mathematica
T4[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^4, {j, 0, n}]; Table[T4[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
-
MuPAD
// as a function T_4:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^4 $ j=0..n): // as a matrix h x h _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]): _P_4:=h->matrix([[binomial(n,m)^4 $m=0..h]$n=0..h]): _T_4:=h->_P(h)^-1*_P_4(h):
-
PARI
T_4(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^4), ", ")); print())} \\ Colin Barker, Oct 01 2015
Formula
T_4(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^4.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above, then T_4(n,m) = n! / (m!)^4 * S(m,m)(4,n).
Comments