cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262728 (2,3,5,7)-primes (see comments for precise definition).

Original entry on oeis.org

2, 173, 181, 233, 443, 877, 967, 1373, 1831, 4001, 4231, 4663, 8191, 8753, 9043, 10333, 10631, 13537, 14591, 16931, 18211, 25411, 32707, 32843, 33637, 37573, 54773, 56167, 63853, 64513, 78101, 84131, 100207, 102667, 106087, 112571, 113153, 133087, 149531
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2015

Keywords

Comments

Let V = (b(1), b(2), ..., b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k).

Examples

			Consider the number a(2) = 173:
in base 2, a(2) = 10101101, which is the prime 172;
in base 3, 10101101 is the prime 2467;
in base 5, 10101101 is the prime 81401;
in base 7, 10101101 is the prime 840743
		

Crossrefs

Programs

  • Mathematica
    {b1, b2, b3, b4} = {2, 3, 5, 7}; z = 15000;
    u = Select[Prime[Range[z]],
    PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b1], b4]] &]
    (* Peter J. C. Moses, Sep 27 2015 *)