A262734 Period 16: repeat (1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2).
1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,-1,1).
Programs
-
Magma
&cat[[1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2]: n in [0..10]]; // Vincenzo Librandi, Sep 29 2015
-
Mathematica
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, -1, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}, 120] (* Vincenzo Librandi, Sep 29 2015 *)
-
PARI
Vec(-(2*x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)*(x^8+1)) + O(x^100)) \\ Colin Barker, Sep 29 2015
-
PARI
111111112/900000009. \\ Altug Alkan, Sep 29 2015
-
PARI
vector(200, n, default(realprecision, n+2); floor(111111112/900000009*10^n)%10) \\ Altug Alkan, Nov 12 2015
Formula
-1 + a(16*(k - 1)) = -2 + a(8*k + 3*(-1)^k - 4) = -3 + a(2*(4*k + (-1)^k - 2)) = -4 + a(8*k + (-1)^k - 4) = -5 + a(4*(2*k - 1)) = -6 + a(8*k - (-1)^k - 4) = -7 + a(-2*(-4*k + (-1)^k + 2)) = -8 + a(8*k - 3*(-1)^k - 4) = -9 + a(8*(2*k - 11)) = 0, for k>0.
a(0) = 1, a(n) = a(n+1) - 1, for 16*(k - 1) <= n < 8*(2*k - 1), and a(n) = a(n + 1) + 1, for 8*(2*k - 1) <= n < 16*k, where k>0.
From Colin Barker, Sep 29 2015: (Start)
a(n) = a(n-1) - a(n-8) + a(n-9) for n>8.
G.f.: -(2*x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1) / ((x-1)*(x^8+1)). (End)
Comments