A262765 a(n) = the number of ways that at least two distinct primes <= prime(n) sum to a prime.
1, 2, 3, 7, 14, 28, 57, 113, 227, 437, 834, 1616, 3143, 6144, 12036, 23467, 45713, 89375, 175722, 346193, 681828, 1344815, 2657630, 5253615, 10374965, 20471599, 40401901, 79871358, 158182869, 313402574, 620776183, 1228390053, 2430853614, 4813878134, 9550070608
Offset: 2
Keywords
Examples
a(5)=7; prime(5)=11: 2+3=5, 2+5=7; 2+11=13; 2+3+5+7=17; 3+5+11=19; 2+3+7+11=23; 5+7+11=23.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
- Alois P. Heinz, Plot of a(n+1)/a(n)
Programs
-
Maple
s:= proc(n) option remember; `if`(n=0, 0, s(n-1)+ithprime(n)) end: b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1, 0, b(n, i-1, t) +(p-> `if`(p>n, 0, b(n-p, i-1, max(0, t-1))))(ithprime(i)))) end: a:= n-> add(`if`(isprime(k), b(k, n, 2), 0), k=5..s(n)): seq(a(n), n=2..36); # Alois P. Heinz, Oct 01 2015
-
Mathematica
Length@ Select[Total /@ ReplaceAll[Subsets[Prime@ Range@ #], {} -> Nothing], PrimeQ] & /@ Range[2, 21] (* _Michael De Vlieger, Oct 01 2015 *)
Formula
a(n) = A071810(n) - n. - Alois P. Heinz, Oct 23 2015
Extensions
a(10)-a(21) from Michael De Vlieger, Oct 01 2015
a(22)-a(36) from Alois P. Heinz, Oct 01 2015
Comments