cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262868 Number of squarefree numbers appearing among the larger parts of the partitions of n into two parts.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 3, 3, 3, 4, 3, 4, 4, 5, 5, 6, 6, 7, 6, 7, 7, 8, 8, 8, 8, 8, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 14, 14, 14, 15, 15, 15, 15, 16, 15, 16, 16, 17, 17, 18, 18, 19, 18, 19, 19, 19, 19, 20, 20, 21, 20, 21, 21, 22, 22
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 03 2015

Keywords

Comments

Number of distinct rectangles with squarefree length and integer width such that L + W = n, W <= L. For example, a(14) = 4; the rectangles are 1 X 13, 3 X 11, 4 X 10 and 7 X 7. - Wesley Ivan Hurt, Nov 02 2017
a(10) = 3, a(100) = 30, a(10^3) = 302, a(10^4) = 3041, a(10^5) = 30393, a(10^6) = 303968, a(10^7) = 3039658, a(10^8) = 30396350, a(10^9) = 303963598, a(10^10) = 3039635373, a(10^11) = 30396355273, a(10^12) = 303963551068, a(10^13) = 3039635509338, a(10^14) = 30396355094469, a(10^15) = 303963550926043, a(10^16) = 3039635509271763, a(10^17) = 30396355092700721, and a(10^18) = 303963550927014110. The limit of a(n)/n is 3/Pi^2. - Charles R Greathouse IV, Nov 04 2017

Examples

			a(4)=2; there are two partitions of 4 into two parts: (3,1) and (2,2). Both of the larger parts are squarefree, thus a(4)=2.
a(5)=1; there are two partitions of 5 into two parts: (4,1) and (3,2). Among the larger parts, only 3 is squarefree, thus a(5)=1.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A262868:=n->add(mobius(n-i)^2, i=1..floor(n/2)): seq(A262868(n), n=1..100);
  • Mathematica
    Table[Sum[MoebiusMu[n - i]^2, {i, Floor[n/2]}], {n, 100}]
    Table[Count[IntegerPartitions[n,{2}][[All,1]],?SquareFreeQ],{n,80}] (* _Harvey P. Dale, Jan 03 2022 *)
  • PARI
    a(n) = sum(i=1, n\2, moebius(n-i)^2); \\ Michel Marcus, Oct 04 2015
    
  • PARI
    f(n)=my(s); forfactored(k=1,sqrtint(n),s+=n\k[1]^2*moebius(k)); s
    a(n)=n--; f(n) - f(n\2) \\ Charles R Greathouse IV, Nov 04 2017

Formula

a(n) = Sum_{i=1..floor(n/2)} mu(n-i)^2, where mu is the Möbius function A008683.
a(n) = A262991(n) - A262869(n).
a(n) ~ 3*n/Pi^2. - Charles R Greathouse IV, Nov 04 2017