A262870 Sum of the squarefree numbers appearing among the larger parts of the partitions of n into two parts.
0, 1, 2, 5, 3, 8, 11, 18, 18, 18, 23, 34, 28, 41, 48, 63, 63, 80, 80, 99, 89, 110, 121, 144, 144, 144, 157, 157, 143, 172, 187, 218, 218, 251, 268, 303, 303, 340, 359, 398, 398, 439, 460, 503, 481, 481, 504, 551, 551, 551, 551, 602, 576, 629, 629, 684, 684
Offset: 1
Examples
a(4)=5; there are two partitions of 4 into two parts: (3,1) and (2,2). The sum of the larger squarefree parts is 3+2=5, thus a(4)=5. a(5)=3; there are two partitions of 5 into two parts: (4,1) and (3,2). Of the larger parts, 3 is the only squarefree part, so a(5)=3.
Programs
-
Maple
with(numtheory): A262870:=n->add((n-i)*mobius(n-i)^2, i=1..floor(n/2)): seq(A262870(n), n=1..100);
-
Mathematica
Table[Sum[(n - i) MoebiusMu[n - i]^2, {i, Floor[n/2]}], {n, 70}]
-
PARI
a(n) = sum(i=1, n\2, (n-i) * moebius(n-i)^2); \\ Michel Marcus, Oct 04 2015
-
PARI
a(n)=my(s); forsquarefree(k=(n+1)\2,n-1, s += k[1]); s \\ Charles R Greathouse IV, Jan 08 2018