cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A263030 Decimal expansion of a constant related to A262876 and A262946 (negated).

Original entry on oeis.org

1, 8, 8, 7, 0, 8, 1, 9, 1, 9, 7, 9, 5, 2, 8, 5, 3, 2, 3, 7, 6, 4, 1, 0, 0, 9, 8, 6, 4, 9, 2, 0, 7, 9, 7, 3, 5, 9, 2, 1, 1, 4, 4, 6, 7, 2, 6, 8, 4, 2, 9, 2, 2, 1, 5, 0, 9, 4, 1, 7, 4, 3, 3, 7, 8, 2, 3, 2, 3, 7, 2, 1, 3, 7, 1, 8, 0, 6, 7, 4, 7, 1, 3, 9, 4, 6, 9, 7, 4, 1, 6, 1, 8, 7, 0, 1, 6, 2, 5, 8, 3, 2, 8, 1, 7, 9
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2015

Keywords

Examples

			-0.18870819197952853237641009864920797359211446726842922150941743378232...
		

Crossrefs

Programs

  • Mathematica
    NIntegrate[1/x*(Exp[-2*x]/(1 - Exp[-3*x])^2 - 1/(9*x^2) - 1/(9*x) + Exp[-x]/36), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]

Formula

Integral_{x=0..infinity} 1/x*(exp(-2*x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 1/(9*x) + exp(-x)/36) dx.
exp(3*(A263030+A263031)) = A^2 * Gamma(1/3) / (3^(11/12) * exp(1/6) * sqrt(2*Pi)), where A = A074962 is the Glaisher-Kinkelin constant.

A035528 Euler transform of A027656(n-1).

Original entry on oeis.org

0, 1, 1, 3, 3, 6, 9, 13, 19, 28, 42, 57, 84, 115, 164, 227, 313, 429, 588, 799, 1079, 1461, 1952, 2617, 3480, 4627, 6111, 8072, 10604, 13905, 18181, 23701, 30828, 39990, 51763, 66822, 86124, 110687, 142039, 181841, 232409, 296401, 377419, 479635, 608558, 770818
Offset: 0

Views

Author

Keywords

Comments

Also the weigh transform of A003602. - John Keith, Nov 17 2021

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[-1 + Product[1/(1 - x^(2*k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
    nmax = 100; Flatten[{0, Rest[CoefficientList[Series[E^Sum[1/j*x^j/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]]}] (* Vaclav Kotesovec, Oct 10 2015 *)

Formula

a(n) ~ A^(1/2) * Zeta(3)^(11/72) * exp(-1/24 - Pi^4/(1728*Zeta(3)) + Pi^2 * n^(1/3)/(3*2^(8/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(4/3)) / (sqrt(3*Pi) * 2^(71/72) * n^(47/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Oct 02 2015

A262877 Expansion of Product_{k>=1} 1/(1-x^(3*k-2))^k.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 6, 9, 9, 13, 19, 23, 28, 42, 51, 62, 84, 108, 127, 170, 219, 261, 328, 427, 512, 632, 807, 987, 1190, 1504, 1838, 2214, 2744, 3374, 4036, 4950, 6060, 7260, 8793, 10748, 12853, 15459, 18766, 22473, 26834, 32425, 38768, 46136, 55376, 66168
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Comments

a(n) is the number of partitions of n into parts 3*k-2 of k kinds (k>=1). - Joerg Arndt, Oct 06 2015

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d+3, 3, 'r')=1, r, 0), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 05 2015
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(3k-2))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax=100; CoefficientList[Series[E^Sum[1/j*x^j/(1-x^(3j))^2,{j,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(13/108) * exp(d2 - Pi^4 / (972*Zeta(3)) + Pi^2 * n^(1/3) / (2^(1/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (2^(41/108) * 3^(20/27) * sqrt(Pi) * n^(67/108)), where d2 = A263031 = Integral_{x=0..infinity} 1/x*(exp(-x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 2/(9*x) - 5*exp(-x)/36) = -0.0145374291832840336050202945022620903605414975934644413815... . - Vaclav Kotesovec, Oct 08 2015

A262878 Expansion of Product_{k>=1} (1+x^(3*k-1))^k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 2, 3, 0, 4, 4, 1, 10, 5, 6, 16, 6, 14, 28, 10, 32, 40, 18, 63, 60, 42, 112, 83, 84, 187, 124, 172, 300, 186, 320, 456, 302, 581, 684, 507, 982, 1004, 874, 1624, 1476, 1508, 2566, 2174, 2582, 3981, 3262, 4338, 6002, 4945, 7138, 8947, 7660
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Comments

In general, if s>0, t>0, GCD(s,t)=1 and g.f. = Product_{k>=1} (1 + x^(s*k-t))^k then a(n) ~ 2^(t^2/(2*s^2) - 3/4) * s^(2/3) * Zeta(3)^(1/6) * exp(-Pi^4 * t^2 / (1296 * s^2 * Zeta(3)) + Pi^2 * t * 2^(1/3) * 3^(2/3) * s^(2/3) * n^(1/3) / (36 * s^2 * Zeta(3)^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / (2^(4/3) * s^(2/3)) ) / (3^(1/3) * s * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Oct 12 2015

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= n-> `if`(n<3, n-1, (p-> [0, -r, 2*r, 0, 0, 2*r+1][p]
             )(1+irem(n+3, 6, 'r'))):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 05 2015
  • Mathematica
    nmax=100; CoefficientList[Series[Product[(1+x^(3k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax=100; CoefficientList[Series[E^Sum[(-1)^(j+1)/j*x^(2*j)/(1-x^(3j))^2,{j,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(2^(-4/3) * 3^(2/3) * Zeta(3)^(1/3) * n^(2/3) + Pi^2 * n^(1/3) / (2^(5/3)*3^(8/3) * Zeta(3)^(1/3)) - Pi^4/(11664*Zeta(3))) * Zeta(3)^(1/6) / (2^(25/36) * 3^(2/3) * sqrt(Pi) * n^(2/3)).

A262879 Expansion of Product_{k>=1} (1+x^(3*k-2))^k.

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 3, 4, 1, 4, 10, 6, 5, 16, 14, 9, 28, 32, 17, 40, 63, 41, 63, 112, 83, 94, 187, 171, 156, 301, 319, 260, 467, 580, 465, 713, 981, 818, 1095, 1627, 1452, 1682, 2584, 2510, 2632, 4047, 4266, 4162, 6181, 7054, 6685, 9396, 11423, 10753, 14132
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Product[(1+x^(3k-2))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax=100; CoefficientList[Series[E^Sum[(-1)^(j+1)/j*x^j/(1-x^(3j))^2,{j,1,nmax}],{x,0,nmax}],x]
    Clear[a]; a[n_]:=a[n] = If[n==0, 1, Sum[Sum[d*{0, 2*Floor[d/6] + 1, -Floor[d/6] - 1, 0, 2*Floor[d/6] + 2, 0}[[1 + Mod[d, 6]]], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100}]

Formula

a(n) ~ exp(2^(-4/3) * 3^(2/3) * Zeta(3)^(1/3) * n^(2/3) + Pi^2 * n^(1/3) / (2^(2/3) * 3^(8/3) * Zeta(3)^(1/3)) - Pi^4/(2916*Zeta(3))) * Zeta(3)^(1/6) / (2^(19/36) * 3^(2/3) * sqrt(Pi) * n^(2/3)).

A262946 Expansion of Product_{k>=1} 1/(1-x^(3*k-1))^(3*k-1).

Original entry on oeis.org

1, 0, 2, 0, 3, 5, 4, 10, 13, 15, 37, 31, 61, 87, 99, 178, 228, 286, 477, 552, 816, 1163, 1418, 2077, 2790, 3507, 5113, 6478, 8563, 11888, 15005, 20100, 27054, 34055, 46002, 59905, 76436, 102105, 130879, 168103, 221954, 281300, 363743, 472557, 597579, 772148
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2015

Keywords

Comments

A262946(n)/A262947(n) ~ exp(3*(d1-d2)) * Gamma(1/3)^3 / (2*Pi)^(3/2), where d1 = A263030 and d2 = A263031. - Vaclav Kotesovec, Oct 08 2015

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d+3, 3, 'r')=2, 3*r-1, 0),
           d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Oct 05 2015
  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/((1-x^(3k-1))^(3k-1)),{k,1,nmax}],{x,0,nmax}],x]
    nmax=60; CoefficientList[Series[E^Sum[1/j*x^(2*j)*(2+x^(3*j))/(1-x^(3*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (2*Zeta(3))^(5/36) * exp(3*d1 + (3/2)^(2/3) * Zeta(3)^(1/3) * n^(2/3)) / (3^(29/36) * Gamma(2/3) * n^(23/36)), where d1 = A263030 = Integral_{x=0..infinity} 1/x*(exp(-2*x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 1/(9*x) + exp(-x)/36) = -0.18870819197952853237641009864920797359211446726842922150941... . - Vaclav Kotesovec, Oct 08 2015

A263141 Expansion of Product_{k>=1} 1/(1-x^(5*k-1))^k.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 2, 3, 0, 1, 2, 6, 4, 1, 2, 6, 10, 6, 2, 6, 14, 20, 8, 6, 14, 29, 30, 13, 14, 34, 54, 50, 22, 34, 66, 99, 74, 43, 72, 133, 166, 119, 82, 148, 242, 276, 182, 166, 286, 438, 442, 301, 316, 541, 744, 701, 494, 608, 976, 1255
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d+5, 5, 'r')=4, r, 0), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100); # after Alois P. Heinz
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(5k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; CoefficientList[Series[E^Sum[1/j*x^(4*j)/(1 - x^(5*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{j>=1} 1/j*x^(4*j)/(1 - x^(5*j))^2).
a(n) ~ Zeta(3)^(169/900) * exp(d51 - Pi^4/(10800*Zeta(3))+ Pi^2 * 2^(2/3) * 5^(2/3) * n^(1/3) / (300 * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * 2^(-2/3) * 5^(-2/3) * n^(2/3)) / (2^(281/900) * 5^(169/450) * sqrt(3*Pi) * n^(619/900)), where d51 = A263178 = Integral_{x=0..infinity} exp(-4*x)/(x*(1 - exp(-5*x))^2) - 1/(25*x^3) - 1/(25*x^2) + 19/(300*x*exp(x)) = -0.1269958671388232529452705747311358056... .

A262923 Expansion of Product_{k>=1} 1 / ((1-x^(3*k-1))^(3*k-1) * (1-x^(3*k-2))^(3*k-2)).

Original entry on oeis.org

1, 1, 3, 3, 10, 15, 27, 44, 79, 128, 211, 331, 549, 843, 1338, 2061, 3195, 4851, 7384, 11104, 16696, 24774, 36817, 54173, 79560, 116067, 168880, 244293, 352480, 506012, 724531, 1032762, 1468271, 2079525, 2937102, 4134399, 5804795, 8124459, 11342952, 15791650
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Comments

Convolution of A262946 and A262947.

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/((1 - x^(3*k-1))^(3*k-1) * (1 - x^(3*k-2))^(3*k-2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(-1/6 + 3^(2/3)*(Zeta(3)/2)^(1/3) * n^(2/3)) * A^2 * Zeta(3)^(1/9) / (2^(5/18) * 3^(31/36) * sqrt(Pi) * n^(11/18)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263031 Decimal expansion of a constant related to A262877 and A262947 (negated).

Original entry on oeis.org

0, 1, 4, 5, 3, 7, 4, 2, 9, 1, 8, 3, 2, 8, 4, 0, 3, 3, 6, 0, 5, 0, 2, 0, 2, 9, 4, 5, 0, 2, 2, 6, 2, 0, 9, 0, 3, 6, 0, 5, 4, 1, 4, 9, 7, 5, 9, 3, 4, 6, 4, 4, 4, 1, 3, 8, 1, 5, 2, 2, 4, 7, 4, 0, 5, 5, 3, 4, 6, 9, 2, 7, 4, 4, 9, 5, 5, 0, 0, 8, 3, 1, 2, 5, 9, 0, 7, 2, 3, 8, 9, 0, 1, 2, 7, 7, 0, 9, 8, 8, 3, 6, 0, 5, 4, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2015

Keywords

Examples

			-0.01453742918328403360502029450226209036054149759346444138152247405534...
		

Crossrefs

Programs

  • Mathematica
    NIntegrate[1/x*(Exp[-x]/(1 - Exp[-3*x])^2 - 1/(9*x^2) - 2/(9*x) - 5*Exp[-x]/36), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]

Formula

Integral_{x=0..infinity} 1/x*(exp(-x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 2/(9*x) - 5*exp(-x)/36) dx.
exp(3*(A263030+A263031)) = A^2 * Gamma(1/3) / (3^(11/12) * exp(1/6) * sqrt(2*Pi)), where A = A074962 is the Glaisher-Kinkelin constant.

A262883 Expansion of Product_{k>=1} 1/((1-x^(3*k-1))*(1-x^(3*k-2)))^k.

Original entry on oeis.org

1, 1, 2, 2, 5, 7, 10, 15, 24, 33, 49, 68, 100, 136, 193, 267, 370, 501, 690, 928, 1260, 1687, 2265, 3007, 4006, 5289, 6987, 9163, 12033, 15698, 20469, 26572, 34470, 44510, 57442, 73861, 94852, 121439, 155287, 198007, 252165, 320335, 406396, 514410, 650288
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Comments

Convolution of A262876 and A262877.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d+3, 3, 'r')=0, 0, r), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 05 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1-x^(3*k-1))*(1-x^(3*k-2)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(-1/18 - Pi^4/(864*Zeta(3)) + (3*Zeta(3)/2)^(1/3) * n^(2/3) + Pi^2 * n^(1/3) / (2^(5/3)*3^(4/3)*Zeta(3)^(1/3))) * A^(2/3) * Gamma(4/3)^(1/3) * Zeta(3)^(7/54) / (2^(11/27) * 3^(79/108) * Pi^(2/3) * n^(17/27)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
Showing 1-10 of 16 results. Next