A262929 Expansion of phi(-x^3) / psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.
1, 0, 0, -2, -1, 0, 0, 2, 1, 0, 0, -2, 0, 0, 0, 4, 1, 0, 0, -6, -2, 0, 0, 8, 1, 0, 0, -12, -1, 0, 0, 16, 2, 0, 0, -22, -3, 0, 0, 30, 2, 0, 0, -38, -1, 0, 0, 50, 4, 0, 0, -66, -5, 0, 0, 84, 3, 0, 0, -106, -3, 0, 0, 136, 6, 0, 0, -172, -8, 0, 0, 214, 5, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 - 2*x^3 - x^4 + 2*x^7 + x^8 - 2*x^11 + 4*x^15 + x^16 + ... G.f. = q^-1 - 2*q^5 - q^7 + 2*q^13 + q^15 - 2*q^21 + 4*q^29 + q^31 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ 2 x^(1/2) EllipticTheta[ 4, 0, x^3] / EllipticTheta[ 2, 0, x^2], {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^4 + A) / (eta(x^6 + A) * eta(x^8 + A)^2), n))};
-
PARI
q='q+O('q^99); Vec(eta(q^3)^2*eta(q^4)/(eta(q^6)*eta(q^8)^2)) \\ Altug Alkan, Jul 31 2018
Formula
Expansion of q^(1/2) * eta(q^3)^2 * eta(q^4) / (eta(q^6) * eta(q^8)^2) in powers of q.
Euler transform of period 24 sequence [0, 0, -2, -1, 0, -1, 0, 1, -2, 0, 0, -2, 0, 0, -2, 1, 0, -1, 0, -1, -2, 0, 0, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = (32/3)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261877.
a(12*n) = A262150(n). a(12*n + 3) = -2*A262151(n). a(12*n + 4) = -A262152(n). a(12*n + 7) = 2*A262156(n). a(12*n + 8) = A262157(n). a(12*n + 11) = -2*A262158(n). - Michael Somos, Apr 03 2016
Convolution inverse is A261877. - Michael Somos, Oct 22 2017
Comments