A262965 Least number k such that k mod s = prime(n) where s is the sum of the distinct primes dividing k.
12, 10, 14, 15, 26, 57, 38, 85, 87, 62, 111, 129, 86, 603, 159, 177, 122, 201, 219, 146, 237, 927, 267, 545, 309, 206, 327, 218, 1057, 1016, 1359, 411, 278, 1267, 302, 471, 489, 3088, 519, 537, 362, 1561, 386, 597, 398, 1687, 3856, 687, 458, 1897, 717, 482
Offset: 1
Keywords
Examples
a(5) = 26 because 26 = 2*13 => 26 mod (2+13) = 26 mod 15 = 11 = prime(5).
Links
- Michel Lagneau, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A008472.
Programs
-
Mathematica
Table[k=1;While[Mod[k,Plus@@First[Transpose[FactorInteger[k]]]]!=Prime[n],k++];k,{n,50}]
-
PARI
spf(k) = my(f = factor(k)); vecsum(f[,1]); a(n) = {k=2; while (k % spf(k) != prime(n), k++); k;} \\ Michel Marcus, Oct 06 2015
-
Python
from sympy import prime, primefactors def a(n): k, target = 2, prime(n) while k%sum(primefactors(k)) != target: k += 1 return k print([a(n) for n in range(1, 53)]) # Michael S. Branicky, Dec 10 2021
Comments