A262973 Total tail length of all iteration trajectories of all elements of random mappings from [n] to [n].
0, 2, 36, 624, 11800, 248400, 5817084, 150660608, 4285808496, 133010784000, 4475982692500, 162419627132928, 6324111407554824, 263067938335913984, 11645155099754347500, 546652030933421260800, 27126781579050558916576, 1418971858887930496745472
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..380
- P. Flajolet and A. M. Odlyzko, Random Mapping Statistics, INRIA RR 1114, 1989.
- Math StackExchange, Generating functions for tail length and rho-length
Programs
-
Maple
proc(n) 1/2*n!*add(n^q*(n - q)*(n - 1 - q)/q!, q = 0 .. n - 2) end proc
-
Mathematica
Table[n!/2 Sum[n^q (n - q) (n - 1 - q)/q!, {q, 0, n - 2}], {n, 21}] (* Michael De Vlieger, Oct 06 2015 *)
Formula
E.g.f.: T^2/(1-T)^4 where T is the labeled tree function, average over all mappings and values is asymptotic to sqrt(Pi*n/8).
Comments