cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262997 a(n+3) = a(n) + 24*n + 40, a(0)=0, a(1)=5, a(2)=19.

Original entry on oeis.org

0, 5, 19, 40, 69, 107, 152, 205, 267, 336, 413, 499, 592, 693, 803, 920, 1045, 1179, 1320, 1469, 1627, 1792, 1965, 2147, 2336, 2533, 2739, 2952, 3173, 3403, 3640, 3885, 4139, 4400, 4669, 4947, 5232, 5525, 5827, 6136, 6453, 6779, 7112, 7453, 7803, 8160, 8525
Offset: 0

Views

Author

Paul Curtz, Oct 07 2015

Keywords

Comments

The hexasections of A262397(n) are
0, 1, 4, 9, 16, 25, 36, ... = A000290(n)
0, 5, 19, 40, 69, 107, 152, ... = a(n)
0, 1, 5, 11, 18, 28, 40, ... = A240438(n+1)
1, 9, 25, 49, 81, 121, 169, ... = A016754(n)
0, 2, 7, 13, 21, 32, 44, ... = A262523(n)
3, 13, 32, 59, 93, 136, 187, ... = e(n+1).
The five-step recurrence in FORMULA is valuable for the six sequences.
Consider a(n) extended from right to left with their first two differences:
..., 59, 32, 13, 3, 0, 5, 19, 40, 69, ...
..., -27, -19, -10, -3, 5, 14, 21, 29, 38, ...
..., 8, 9, 7, 8, 9, 7, 8, 9, 7, ... .
From 0,the first row is
1) from right to left: e(n)
2) from left to right: a(n).
a(n) and e(n) are companions.
The third row is of period 3.
The last digit of a(n) is of period 15; the same is true of e(n).

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 5; a[2] = 19; a[n_] := a[n] = a[n - 3] + 24 (n - 3) + 40; Table[a@ n, {n, 0, 46}] (* Michael De Vlieger, Oct 09 2015 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,5,19,40,69},60] (* Harvey P. Dale, Dec 16 2024 *)
  • PARI
    vector(100, n, n--; 4*n^2 + (4*(n+1)-3)\3) \\ Altug Alkan, Oct 07 2015
    
  • PARI
    concat(0, Vec(-x*(x+1)*(3*x^2+4*x+5)/((x-1)^3*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 08 2015

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) - a(n-5), n> 4.
a(n) = A016742(n) + A042965(n).
a(-n) = e(n).
a(-n) + a(n) = 8*n^2.
a(n+2) - 2*a(n+1) + a(n) = period 3:repeat 9, 7, 8.
a(n+3) - a(n-3) = 8*(1 + 6*n).
a(n+7) - a(n-7) = 40*(2 + 3*n).
a(2n+1) = -a(2n) + 6*n + 3.
a(2n+2) = -a(2n+1) + 4*(n+1).
a(3n) = 4*n*(9*n+1) = 8*A022267(n), a(3n+1) = 36*n^2 +28*n +5, a(3n+2) = 36*n^2 +52*n +19.
G.f.: -x*(x+1)*(3*x^2+4*x+5) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Oct 08 2015