A263003 Partition array for the products of the hook lengths of Ferrers (Young) diagrams corresponding to the partitions of n, written in Abramowitz-Stegun order.
1, 1, 2, 2, 6, 3, 6, 24, 8, 12, 8, 24, 120, 30, 24, 20, 24, 30, 120, 720, 144, 80, 144, 72, 45, 144, 72, 80, 144, 720, 5040, 840, 360, 360, 336, 144, 240, 240, 252, 144, 360, 336, 360, 840, 5040, 40320, 5760, 2016, 1440, 2880, 1920, 630, 576, 720, 960, 1152, 448, 720, 576, 2880, 1152, 630, 1440, 1920, 2016, 5760, 40320, 362880, 45360, 13440, 7560, 8640, 12960, 3456, 2240, 4320, 3024, 2160, 8640, 6480, 1920, 1680, 1680, 2160, 4320, 5184, 1920, 3024, 2240, 8640, 6480, 3456, 7560, 12960, 13440, 45360, 362880
Offset: 0
Examples
The first rows of this irregular triangle are: n\k 1 2 3 4 5 6 7 8 9 10 11 0: 1 1: 1 2: 2 2 3: 6 3 6 4: 24 8 12 8 24 5: 120 30 24 20 24 30 120 6: 720 144 80 144 72 45 144 72 80 144 720 ... Note that the rows are in general not symmetric. See the W. Lang link for rows n = 1..15. a(6,6) is related to the (self-conjugate) partition (1, 2, 3) of n = 6, taken in reverse order (3, 2, 1) with the Ferrers (or Young) diagram _ _ _ |_|_|_| and the hook length numbers 5 3 1 ... |_|_| 3 1 |_| 1 The product gives 5*3*1*3*1*1 = 45 = a(6,6).
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 831-2.
- B. Wybourne, Symmetry principles and atomic spectroscopy, Wiley, New York, 1970, p. 9.
Links
- Alois P. Heinz, Rows n = 0..30, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Kenneth Glass and Chi-Keung Ng, A Simple Proof of the Hook Length Formula, Am. Math. Monthly 111 (2004) 700 - 704.
- Wolfdieter Lang, Rows 1..15.
Programs
-
Maple
h:= l-> (n-> mul(mul(1+l[i]-j+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): g:= (n, i, l)->`if`(n=0 or i=1, [h([l[], 1$n])], `if`(i<1, [], [g(n, i-1, l)[], `if`(i>n, [], g(n-i, i, [l[], i]))[]])): T:= n-> g(n$2, [])[]: seq(T(n), n=0..10); # Alois P. Heinz, Nov 05 2015
Formula
a(n,k) = Product_{i=1..m(n,k)} (x_i)!/Det(x_i^(m(n,k) - j)) with the Vandermonde determinant for the variables x_i := lambda(n,k)_i + m(n,k) - i, for i, j = 1..m(n,k), where m(n,k) is the number of parts of the k-th partition of n denoted by lambda(n,k), in the A-St order (see above). Lambda(n,k)_i stands for the i-th part of the partition lambda(n,k), sorted in nonincreasing order (this is the reverse of the A-St notation for a partition).
Extensions
Row n=0 prepended by Alois P. Heinz, Nov 05 2015
Comments