cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263064 Number of lattice paths from (n,n,n,n) to (0,0,0,0) using steps that decrement one or more components by one.

Original entry on oeis.org

1, 75, 23917, 10681263, 5552351121, 3147728203035, 1887593866439485, 1177359342144641535, 756051015055329306625, 496505991344667030490635, 331910222316215755702672557, 225110028217225196478861017775, 154515942591851050758389232988689
Offset: 0

Views

Author

Alois P. Heinz, Oct 08 2015

Keywords

Comments

Also, the number of alignments for 4 sequences of length n each (Slowinski 1998).

Crossrefs

Column k=4 of A262809.

Programs

  • Mathematica
    With[{k = 4}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 15}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

Recurrence: (n-1)*n^3*(864*n^4 - 6480*n^3 + 17763*n^2 - 21015*n + 9059)*a(n) = 15*(n-1)*(44928*n^7 - 404352*n^6 + 1459788*n^5 - 2712556*n^4 + 2772389*n^3 - 1538829*n^2 + 423093*n - 43506)*a(n-1) + (188352*n^8 - 2166048*n^7 + 10541118*n^6 - 28166748*n^5 + 44769259*n^4 - 42719172*n^3 + 23364582*n^2 - 6470217*n + 671094)*a(n-2) + 3*(n-2)*(3456*n^7 - 38016*n^6 + 169116*n^5 - 388336*n^4 + 486619*n^3 - 322644*n^2 + 100014*n - 10989)*a(n-3) - (n-3)^3*(n-2)*(864*n^4 - 3024*n^3 + 3507*n^2 - 1473*n + 191)*a(n-4). - Vaclav Kotesovec, Mar 22 2016
a(n) ~ sqrt(8 + 6*sqrt(2) + sqrt(140 + 99*sqrt(2))) * (195 + 138*sqrt(2) + 4*sqrt(4756 + 3363*sqrt(2)))^n / (8 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 22 2016