cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263083 a(n) = largest k such that A049820(k) <= A262509(n).

Original entry on oeis.org

119196, 119196, 119232, 119280, 119280, 119952, 119970, 120120, 120120, 120132, 120132, 120320, 120330, 120400, 120432, 120750, 120780, 120960, 120960, 120960, 120960, 120960, 121500, 121600, 121856, 122112, 122304, 122304, 122310, 122310, 122850, 123000, 123240, 123240, 123264, 123264, 123300, 123840, 24660720, 24660720, 24662484, 24662484, 24663804, 24665130, 24665130, 24665472, 24666048
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2015

Keywords

Comments

When a(n) > A262509(n), then a(n) is the "farthest immediate bypasser" of A262509(n) [the n-th "constriction point" in the tree generated by edge-relation A049820(child) = parent], bypassing it in the single A049820-step. In contrast, A263081(n) gives the farthest node (by necessity a leaf-node) which bypasses A262509(n) in multiple A049820-steps.
Sequence b(n) = A155043(A262509(n)) - A155043(a(n)) = A262508(n) - A155043(a(n)) gives the following terms: 395, 396, 354, 363, 364, 399, 390, 419, 422, 420, 421, 442, 430, 437, 460, 456, 498, 511, 512, 513, 515, 516, 506, 509, 533, 543, 564, 565, 557, 558, 591, 608, 612, 613, 614, 617, 617, 655, 3240, 3241, 3236, 3239, 3291, 3346, 3350, 3373, 3451, 3455, 2, 3598, 3637, 3605, 3674, 3688, 3689, 3748, 3749, 3792, 3793, 3794, 3800, 3803, 3858, 3843, 3902, 3947, 3985, 3986, ... which tells how many steps shorter trajectory there is to zero (using A049820) for those bypassers than for the constriction points themselves.

Crossrefs

Formula

a(n) = A262509(n)+A262908(n).