A263086 Partial sums of A099777, where A099777(n) gives the number of divisors of n-th even number.
2, 5, 9, 13, 17, 23, 27, 32, 38, 44, 48, 56, 60, 66, 74, 80, 84, 93, 97, 105, 113, 119, 123, 133, 139, 145, 153, 161, 165, 177, 181, 188, 196, 202, 210, 222, 226, 232, 240, 250, 254, 266, 270, 278, 290, 296, 300, 312, 318, 327, 335, 343, 347, 359, 367, 377, 385, 391, 395, 411, 415, 421, 433, 441, 449, 461, 465, 473, 481
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10082
- A. Karttunen, Ratio a(n)/A263085(n) drawn with OEIS Plot2-script
Programs
-
Maple
with(numtheory): seq(add(tau(2*k), k=1..n), n= 1..60); # Ridouane Oudra, Aug 24 2019
-
Mathematica
Accumulate[DivisorSigma[0, 2 Range@ 69]] (* Michael De Vlieger, Oct 13 2015 *)
-
PARI
a(n) = sum(k=1, n, numdiv(2*k)); \\ Michel Marcus, Aug 25 2019
-
Python
from math import isqrt def A263086(n): return (t:=isqrt(m:=n>>1))**2-((s:=isqrt(n))**2<<1)+((sum(n//k for k in range(1,s+1))<<1)-sum(m//k for k in range(1,t+1))<<1) # Chai Wah Wu, Oct 23 2023
Formula
a(1) = 2; for n > 1, a(n) = A000005(2*n) + a(n-1) [where A000005(k) gives the number of divisors of k].
Other identities. For all n >= 1:
a(n) ~ n/2 * (3*log(n) + log(2) + 6*gamma - 3), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 13 2019
From Ridouane Oudra, Aug 24 2019: (Start)
a(n) = Sum_{k=1..n} A000005(2*k)