A263090 Primes p for which A049820(x) = p has a solution.
2, 3, 5, 11, 17, 23, 29, 31, 41, 47, 53, 59, 61, 71, 73, 83, 89, 97, 101, 107, 127, 137, 139, 149, 151, 157, 173, 179, 181, 191, 197, 199, 211, 223, 227, 233, 239, 263, 269, 277, 281, 283, 311, 317, 331, 337, 347, 349, 367, 373, 389, 409, 419, 421, 431, 433, 443, 449, 457, 461, 467, 521, 523, 541, 547, 557, 569, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643
Offset: 1
Keywords
Examples
2 is present, as we have 6 - d(6) = 6 - 4 = 2. 3 is present, as we have 5 - d(5) = 3. The same holds for all lesser twin primes (A001359).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..7955
Crossrefs
Programs
-
Mathematica
lim = 10000; s = Select[Sort@ DeleteDuplicates@ Table[n - DivisorSigma[0, n], {n, lim}], PrimeQ]; Take[s, 79] (* Michael De Vlieger, Oct 13 2015 *)
-
PARI
allocatemem(123456789); uplim1 = 2162160 + 320; \\ = A002182(41) + A002183(41). v060990 = vector(uplim1); for(n=3, uplim1, v060990[n-numdiv(n)]++); A060990 = n -> if(!n,2,v060990[n]); n=0; forprime(p=2, 131071, if((A060990(p) > 0), n++; write("b263090.txt", n, " ", p)));
-
Scheme
;; With Antti Karttunen's IntSeq-library. (define A263090 (MATCHING-POS 1 1 (lambda (n) (and (= 1 (A010051 n)) (not (zero? (A060990 n)))))))
Comments