cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263143 Expansion of Product_{k>=1} 1/(1-x^(5*k-3))^k.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 4, 2, 7, 2, 7, 6, 7, 12, 7, 16, 12, 16, 26, 16, 35, 22, 40, 44, 40, 68, 47, 80, 84, 86, 133, 94, 167, 146, 182, 238, 198, 314, 274, 358, 431, 386, 593, 494, 696, 754, 761, 1056, 917, 1288, 1326, 1430, 1880, 1664, 2348, 2290
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d+5, 5, 'r')=2, r, 0), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100); # after Alois P. Heinz
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(5k-3))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; CoefficientList[Series[E^Sum[1/j*x^(2*j)/(1 - x^(5*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{j>=1} 1/j*x^(2*j)/(1 - x^(5*j))^2).
a(n) ~ Zeta(3)^(121/900) * exp(d53 - Pi^4/(1200*Zeta(3)) + Pi^2 * 2^(2/3) * 5^(2/3) * n^(1/3) / (100*Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * 2^(-2/3) * 5^(-2/3) * n^(2/3)) / (2^(329/900) * 5^(121/450) * sqrt(3*Pi) * n^(571/900)), where d53 = A263180 = Integral_{x=0..infinity} exp(-2*x)/(x*(1 - exp(-5*x))^2) - 1/(25*x^3) - 3/(25*x^2) - 29/(300*x*exp(x)) = -0.1461681349208040073620067065149936790708... .