cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A263140 Expansion of Product_{k>=1} (1 + x^(2*k-1))^k.

Original entry on oeis.org

1, 1, 0, 2, 2, 3, 4, 5, 10, 11, 16, 20, 31, 39, 50, 71, 93, 124, 154, 211, 271, 357, 449, 587, 762, 968, 1233, 1571, 2021, 2535, 3220, 4049, 5145, 6431, 8070, 10105, 12670, 15784, 19619, 24447, 30348, 37635, 46464, 57532, 70945, 87477, 107456, 132192, 162220
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(2*k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; CoefficientList[Series[E^Sum[(-1)^(j+1)/j*x^j/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{j>=1} (-1)^(j+1)/j*x^j/(1 - x^(2*j))^2).
a(n) ~ exp(-Pi^4 / (5184*Zeta(3)) + Pi^2 * n^(1/3) / (8 * 3^(4/3) * Zeta(3)^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/4) * Zeta(3)^(1/6) / (2^(23/24) * 3^(1/3)* sqrt(Pi) * n^(2/3)).

A263150 Expansion of Product_{k>=1} 1/(1 - x^(2*k+1))^k.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 6, 7, 11, 12, 21, 22, 34, 38, 59, 67, 95, 118, 155, 198, 252, 330, 409, 540, 662, 867, 1067, 1382, 1705, 2187, 2705, 3430, 4267, 5348, 6666, 8303, 10352, 12812, 15964, 19681, 24467, 30091, 37282, 45769, 56539, 69296, 85304
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2015

Keywords

Comments

The side effect of this calculation is a formula: Integral_{x=0..infinity} exp(-3*x)/(x*(1-exp(-2*x))^2) - 1/(4*x^3) + 1/(4*x^2) - exp(-x)/(24*x) = log(2)/6 + log(A)/2 - 1/24, where A = A074962 is the Glaisher-Kinkelin constant.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d-1, 2)=0, (d-1)/2, 0),
           d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # after Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(2*k+1))^k,{k,1,nmax}],{x,0,nmax}],x]
    nmax = 100; CoefficientList[Series[E^Sum[1/j*x^(3*j)/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{j>=1} 1/j*x^(3*j)/(1 - x^(2*j))^2).
a(n) ~ sqrt(A) * Zeta(3)^(11/72) * exp(-1/24 - Pi^4/(1728*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(8/3)* Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)/2) / (2^(35/72) * sqrt(3*Pi) * n^(47/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263199 Expansion of Product_{k>=1} 1/(1 - x^(2*k+1))^(2*k+1).

Original entry on oeis.org

1, 0, 0, 3, 0, 5, 6, 7, 15, 19, 36, 41, 77, 100, 156, 230, 317, 482, 665, 981, 1354, 1967, 2710, 3852, 5363, 7453, 10373, 14287, 19780, 27022, 37220, 50583, 69140, 93693, 127098, 171640, 231469, 311323, 417627, 559577, 747122, 996947, 1325872, 1761900
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 12 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(d::even, 0, d), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    seq(b(n)-b(n-1), n=0..60);  # after Alois P. Heinz
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1 - x^(2*k+1))^(2*k+1),{k,1,nmax}],{x,0,nmax}],x]

Formula

For n>1, a(n) = A262811(n) - A262811(n-1).
a(n) ~ A * Zeta(3)^(17/36) * exp(-1/12 + 3 * Zeta(3)^(1/3) * n^(2/3)/2) / (2^(2/3) * sqrt(3*Pi) * n^(35/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A361008 G.f.: Product_{k >= 0} ((1 + x^(2*k+1)) / (1 - x^(2*k+1)))^k.

Original entry on oeis.org

1, 0, 0, 2, 0, 4, 2, 6, 8, 10, 20, 18, 42, 40, 78, 92, 140, 192, 258, 382, 480, 728, 902, 1334, 1698, 2404, 3148, 4292, 5742, 7608, 10304, 13430, 18192, 23592, 31720, 41144, 54766, 71188, 93762, 122156, 159420, 207820, 269380, 350726, 452434, 587520, 755446
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2*k + 1))/(1 - x^(2*k + 1)))^k, {k, 0, n}], {x, 0, n}], {n, 0, 50}]

Formula

a(n) ~ sqrt(A/(3*Pi)) * (7*zeta(3))^(11/72) * exp(3*(7*zeta(3))^(1/3) * n^(2/3)/4 - Pi^2 * n^(1/3)/(8*(7*zeta(3))^(1/3)) - 1/24 - Pi^4/(1344*zeta(3))) / (2^(3/4) * n^(47/72)), where A = A074962 is the Glaisher-Kinkelin constant.
Showing 1-4 of 4 results.