A263171 Smallest prime starting a sequence of 4 consecutive odd primes such that the center of the symmetrical gaps is 2n.
7, 5, 251, 353, 137, 2393, 109, 1931, 1753, 883, 3733, 7351, 12007, 2969, 8887, 27697, 1321, 22811, 38377, 62987, 183823, 15679, 124001, 180563, 45887, 48677, 100847, 178693, 152993, 557087, 34057, 367949, 294551, 134507, 173357, 1802407, 531359, 1134311, 933067
Offset: 1
Keywords
Examples
a(2)=5 because the 4 consecutive primes 5, 7, 11, 13 have gaps 2, 4, 2, which is symmetric about its center 4 = 2*2.
Programs
-
Maple
with(numtheory):nn:=500000:l:=2:T:=array(1..2*l-1)): for n from 1 to 35 do:ii:=0: for k from 1 to nn while(ii=0) do: lst:={}:lst1:={}: for m from 1 to 2*l do: lst:=lst union {ithprime(k+m-1)} od: for p from 1 to 2*l do: lst1:=lst1 union {lst[p]+lst[2*l-p+1]} od: n0:=nops(lst1): if n0=1 then for a from 1 to 2*l-1 do: T[a]:=lst[a+1]-lst[a]: od: if T[2]=2*n then ii:=1:printf(`%d, `,lst[1]): else fi :fi: od : od:
-
PARI
a(n) = {pa = 3; pb = 5; pc = 7; forprime(p=8, , if (((pc-pb) == 2*n) && ((pb-pa) == (p-pc)), return(pa)); pa = pb; pb = pc; pc = p;);} \\ Michel Marcus, Oct 16 2015
Comments