cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263194 4-digit numbers (with leading zeros supplied where necessary) in which the sum of the number consisting of the first two digits and the number consisting of the last two digits equals the number consisting of the middle two digits.

Original entry on oeis.org

0, 109, 110, 219, 220, 329, 330, 439, 440, 549, 550, 659, 660, 769, 770, 879, 880, 989, 990, 1208, 1318, 1428, 1538, 1648, 1758, 1868, 1978, 2307, 2417, 2527, 2637, 2747, 2857, 2967, 3406, 3516, 3626, 3736, 3846, 3956, 4505, 4615, 4725, 4835, 4945, 5604, 5714, 5824, 5934, 6703, 6813, 6923, 7802, 7912, 8901
Offset: 1

Views

Author

Aresh Pourkavoos, Oct 11 2015

Keywords

Comments

0 can be a leading digit.

Examples

			Since 19 + 78 = 97, 1978 is a term.
		

References

  • George Bredehorn, The Giant Book of Puzzles, Main Street, 2013, page 12.

Crossrefs

Cf. A293686.

Programs

  • C
    #include 
    int main(){
      int e = 10; // what base we are using: experiment with different values (values above 10 do not work well)
      for (int a = 0; a < e; a++){ // I know these nested loops are inelegant, but they're the easiest way
        for (int b = 0; b < e; b++){
          for (int c = 0; c < e; c++){
            for (int d = 0; d < e; d++){
              if ((10*a)+b+(10*c)+d == (10*b)+c){ // if the number formed by the first two digits plus the number formed by the last two digits equals the number formed by the middle two digits
                if (e <= 10){
                printf("%d%d%d%d, ", a, b, c, d); // print the number
                }
                else{
                printf("%d %d %d %d,  ", a, b, c, d); // print the number with extra spaces
                }
              }
            }
          }
        }
      }
      printf("\n");
      return 0;
    }
    
  • Mathematica
    fQ[n_] := Block[{d = PadLeft[IntegerDigits@ n, 4]}, FromDigits@ d[[1 ;; 2]] + FromDigits@ d[[3 ;; 4]] == FromDigits@ d[[2 ;; 3]]]; Select[Range[0, 10^4 - 1], fQ] (* Michael De Vlieger, Oct 26 2015 *)
  • PARI
    is(n) = n < 10000 && n%100 + n \ 100 == (n \ 10) % 100 \\ David A. Corneth, Oct 14 2017
    
  • Python
    def ok(n): return (n//100) + (n%100) == (n//10)%100
    print([m for m in range(10000) if ok(m)]) # Michael S. Branicky, Jan 25 2021

Formula

The sequence contains stretches where, for some n, a(n) - a(n-1) = 110.