A263227 a(n) = n*(67*n - 89)/2.
0, -11, 45, 168, 358, 615, 939, 1330, 1788, 2313, 2905, 3564, 4290, 5083, 5943, 6870, 7864, 8925, 10053, 11248, 12510, 13839, 15235, 16698, 18228, 19825, 21489, 23220, 25018, 26883, 28815, 30814, 32880, 35013, 37213, 39480, 41814, 44215, 46683, 49218, 51820
Offset: 0
Links
- M. R. Farahani, The Wiener index and Hosoya polynomial of a class of Jahangir graphs J_{3,m}, Fundamental J. Math. and Math. Sci., 3 (1), 91-96, 2015.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n*(67*n-89)/2: n in [0..40]]; // Bruno Berselli, Oct 15 2015
-
Maple
seq((1/2)*n*(67*n-89), n = 0 .. 40);
-
Mathematica
Table[n (67 n - 89)/2, {n, 0, 40}] (* Vincenzo Librandi, Oct 13 2015 *)
-
PARI
vector(50, n, n--; n*(67*n-89)/2) \\ Altug Alkan, Oct 12 2015
Formula
G.f.: x*(-11+78*x)/(1-x)^3. - Vincenzo Librandi, Oct 13 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Oct 13 2015
Comments