cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A264984 Even bisection of A263273; terms of A263262 doubled.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 22, 16, 18, 20, 14, 24, 26, 28, 30, 64, 46, 36, 58, 40, 66, 76, 34, 48, 70, 52, 54, 56, 38, 60, 74, 32, 42, 68, 50, 72, 62, 44, 78, 80, 82, 84, 190, 136, 90, 172, 118, 192, 226, 100, 138, 208, 154, 108, 166, 112, 174, 220, 94, 120, 202, 148, 198, 184, 130
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(2*n) # Indranil Ghosh, May 22 2017
  • Scheme
    (define (A264984 n) (A263273 (+ n n)))
    

Formula

a(n) = 2 * A263272(n).
a(n) = A263273(2*n).
Other identities. For all n >= 0:
A010873(a(n)) = 2 * A000035(n) = A010673(n).

A263255 Square array A(r,c), where each row r lists all numbers that are r edges distant from the infinite trunk (A259934) of the tree defined by edge-relation A049820(child) = parent.

Original entry on oeis.org

0, 2, 1, 6, 9, 3, 12, 10, 4, 5, 18, 25, 11, 8, 7, 22, 26, 14, 13, 17, 19, 30, 28, 32, 15, 24, 21, 23, 34, 38, 44, 16, 72, 84, 93, 27, 42, 49, 48, 20, 87, 89, 95, 97, 29, 46, 52, 81, 40, 98, 91, 96, 99, 36, 31, 54, 66, 86, 50, 139, 143, 100, 104, 101, 33, 35, 58, 68, 88, 56, 141, 145, 149, 108, 105, 103, 109, 37
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2015

Keywords

Comments

The array A(row>=0,col>=1) is read by downwards antidiagonals: A(0,1), A(0,2), A(1,1), A(0,3), A(1,2), A(2,1), A(0,4), A(1,3), A(2,2), A(3,1), etc.

Examples

			Top left corner of the array:
   0,   2,   6,  12,  18,  22,  30,  34,  42,  46,  54,  58,  62,  70
   1,   9,  10,  25,  26,  28,  38,  49,  52,  66,  68,  74,  76,  80
   3,   4,  11,  14,  32,  44,  48,  81,  86,  88, 116, 130, 135, 175
   5,   8,  13,  15,  16,  20,  40,  50,  56,  60,  83,  85,  92, 134
   7,  17,  24,  72,  87,  98, 139, 141, 142, 150, 202, 208, 225, 228
  19,  21,  84,  89,  91, 143, 145, 146, 147, 148, 206, 220, 227, 301
  23,  93,  95,  96, 100, 149, 153, 154, 160, 212, 229, 240, 305, 356
  27,  97,  99, 104, 108, 151, 158, 224, 248, 307, 309, 379, 381, 385
  29,  36, 101, 105, 120, 155, 164, 232, 260, 264, 311, 324, 383, 387
  31,  33, 103, 107, 128, 132, 157, 159, 276, 280, 313, 389, 391, 453
  35, 109, 111, 136, 140, 161, 165, 393, 395, 399, 461, 465, 532, 540
  37,  39, 113, 115, 117, 163, 167, 171, 397, 401, 403, 405, 463, 467
  41,  45, 119, 173, 407, 471, 473, 475, 568, 571, 572, 573, 575, 659
  43,  47, 123, 177, 409, 411, 477, 483, 484, 577, 578, 579, 580, 585
  51, 179, 413, 415, 479, 481, 495, 581, 583, 587, 589, 594, 671, 676
  53,  55, 181, 183, 417, 485, 591, 595, 602, 612, 673, 681, 877, 879
  57, 185, 187, 189, 419, 423, 487, 489, 593, 610, 683, 685, 693, 881
  59,  63,  64, 191, 195, 196, 421, 425, 427, 491, 493, 597, 614, 618
  61, 193, 197, 429, 435, 497, 599, 603, 622, 691, 705, 893, 895, 897
  65, 199, 201, 431, 499, 501, 601, 605, 626, 628, 695, 711, 899, 901
  ...
		

Crossrefs

Transpose: A263256.
Row 0: A259934, Row 1: A263261, Row 2: A263262, Row 3: A263263, Row 4: A263264.
Column 0: A263257.
Cf. A263254 (row index, zero-based), A263275 (row index, one-based), A263274 (column index, one-based).
Cf. also array A262898.
Showing 1-2 of 2 results.