A263292 Number of distinct values of |product(A) - product(B)| where A and B are a partition of {1,2,...,n}.
1, 1, 1, 2, 4, 8, 13, 26, 44, 76, 119, 238, 324, 648, 1008, 1492, 2116, 4232, 5680, 11360, 15272, 21872, 33536, 67072, 83168, 121376, 185496, 249072, 328416, 656832, 790656, 1581312, 1980192, 2758624, 4193040, 5555616, 6532896, 13065792, 19845216
Offset: 0
Keywords
Examples
For n = 4, the four possible values of |product(A) - product(B)| are 2, 5, 10, and 23.
Links
- KöMaL-Mathematical and Physical Journal for Secondary Schools, Problems in Mathematics, September 2015.
Crossrefs
Cf. A038667.
Programs
-
Maple
b:= proc(n) option remember; local f, g, h; if n<2 then {1} else f, g, h:= n!, y-> `if`(y^2<=f, y, NULL), (n-1)!; map(x-> {x, g(x*n), g(h/x)}[], b(n-1)) fi end: a:= n-> nops(b(n)): seq(a(n), n=0..25); # Alois P. Heinz, Oct 17 2015
-
Mathematica
a[n_] := Block[{v = Times @@@ Subsets[ Range[2, n], Floor[n/2]]}, Length@ Union@ Abs[v - n!/v]]; Array[a, 20] (* Giovanni Resta, Oct 17 2015 *)
-
Python
from math import prod, factorial from itertools import combinations def A263292(n): m = factorial(n) return 1 if n == 0 else len(set(abs((p:=prod(d))-m//p) for l in range(n,n//2,-1) for d in combinations(range(1,n+1),l))) # Chai Wah Wu, Apr 07 2022
Extensions
a(21)-a(27) from Giovanni Resta, Oct 17 2015
a(28)-a(38) from Alois P. Heinz, Oct 17 2015
Comments