cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263292 Number of distinct values of |product(A) - product(B)| where A and B are a partition of {1,2,...,n}.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 13, 26, 44, 76, 119, 238, 324, 648, 1008, 1492, 2116, 4232, 5680, 11360, 15272, 21872, 33536, 67072, 83168, 121376, 185496, 249072, 328416, 656832, 790656, 1581312, 1980192, 2758624, 4193040, 5555616, 6532896, 13065792, 19845216
Offset: 0

Views

Author

Jerrold Grossman, Oct 13 2015

Keywords

Comments

The problem of showing that no number k is equal to |product(A)-product(B)| for infinitely many different values of n appears in a Hungarian journal for high school students in math and physics (see KöMaL link).
Compare to A038667, which provided the smallest value of |product(A) - product(B)|.
Also the number of distinct values <= sqrt(n!) of element products of subsets of [n]. - Alois P. Heinz, Oct 17 2015

Examples

			For n = 4, the four possible values of |product(A) - product(B)| are 2, 5, 10, and 23.
		

Crossrefs

Cf. A038667.

Programs

  • Maple
    b:= proc(n) option remember; local f, g, h;
          if n<2 then {1}
        else f, g, h:= n!, y-> `if`(y^2<=f, y, NULL), (n-1)!;
             map(x-> {x, g(x*n), g(h/x)}[], b(n-1))
          fi
        end:
    a:= n-> nops(b(n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    a[n_] := Block[{v = Times @@@ Subsets[ Range[2, n], Floor[n/2]]}, Length@ Union@ Abs[v - n!/v]]; Array[a, 20] (* Giovanni Resta, Oct 17 2015 *)
  • Python
    from math import prod, factorial
    from itertools import combinations
    def A263292(n):
        m = factorial(n)
        return 1 if n == 0 else len(set(abs((p:=prod(d))-m//p) for l in range(n,n//2,-1) for d in combinations(range(1,n+1),l))) # Chai Wah Wu, Apr 07 2022

Extensions

a(21)-a(27) from Giovanni Resta, Oct 17 2015
a(28)-a(38) from Alois P. Heinz, Oct 17 2015