cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A061060 Write product of first n primes as x*y with x

Original entry on oeis.org

1, 1, 1, 1, 13, 17, 1, 41, 157, 1811, 1579, 18859, 95533, 17659, 1995293, 208303, 2396687, 58513111, 299808329, 2460653813, 3952306763, 341777053, 115405393057, 437621467859, 1009861675153, 6660853109087, 29075165225531
Offset: 1

Views

Author

Ed Pegg Jr, May 28 2001

Keywords

Examples

			a(4)=1: 2*3*5*7 = 210 = 14*15, so we can take x=14, y=15, with difference of 1.
Also: n=3: 2*3-5=1; n=4: 3*5-2*7=1; n=5: 5*11-2*3*7=13; n=6: 2*7*13-3*5*11=17; n=7: 5*11*13-2*3*7*17=1; n=8: 3*5*11*19-2*7*13*17=41
		

Crossrefs

Programs

  • Maple
    A061060aux := proc(l1,l2) local resul ; resul := product(l1[i],i=1..nops(l1)) ; resul := resul-product(l2[i],i=1..nops(l2)) ; RETURN(abs(resul)) ; end:
    A061060 := proc(n) local plist,i,subl,resul,j,l1,l2,k,d ; plist := [] ; resul := 1 ; for i from 1 to n do resul := resul*ithprime(i) ; plist := [op(plist), ithprime(i)] ; od; for i from 1 to n/2 do subl := combinat[choose](plist,i) ; for j from 1 to nops(subl) do l1 := op(j,subl) ; l2 := convert(plist,set) minus convert(l1,set) ; d := A061060aux(l1,l2) ; if d < resul then resul := d ; fi ; od; od ; RETURN(resul) ; end:
    for n from 3 to 19 do printf("%d,",A061060(n)) ; od ; # R. J. Mathar, Aug 26 2006 [This Maple program was attached to A121315. However I think it belongs here, so I renamed the variables and moved it to this entry. - N. J. A. Sloane, Sep 16 2005]
  • Mathematica
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Block[{arrayofnprimes = Array[Prime, n], primorial = Times @@ Array[Prime, n], diffmin = Infinity, adiff, sub}, If[n == 1, 1, Do[sub = Times @@ NthSubset[i, arrayofnprimes]; adiff = Abs[primorial/sub - sub]; If[adiff < diffmin, diffmin = adiff], {i, 2, 2^n/2}]; diffmin]]; Do[ Print@f@n, {n, 30}] (* Robert G. Wilson v, Sep 14 2006 *)

Formula

Conjecture: Limit_{N->oo} (Sum_{n=1..N} log(a(n))) / (Sum_{n=1..N} prime(n)) = 1/e (A068985). - Alain Rocchelli, Nov 13 2023

Extensions

Terms a(16)-a(45) in b-file computed by Jud McCranie, Apr 15 2000; Jan 12 2016
a(46)-a(60) in b-file from Don Reble, Jul 11 2020
a(61)-a(70) in b-file from Max Alekseyev, Apr 20 2022

A038667 Minimal value of |product(A) - product(B)| where A and B are a partition of {1,2,3,...,n}.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 6, 2, 18, 54, 30, 36, 576, 576, 840, 6120, 24480, 20160, 93696, 420480, 800640, 1305696, 7983360, 80313120, 65318400, 326592000, 2286926400, 3002360256, 13680979200, 37744574400, 797369149440, 1763653953600, 16753029012720, 16880461678080, 10176199188480, 26657309952000
Offset: 0

Views

Author

Keywords

Comments

Conjecture: The sequence of rational numbers A061057(n)/a(n) has 1 as a limit point. Question: What other limit points does the sequence have? - Richard Peterson, Jul 13 2023

Examples

			For n=1, we put 1 in one set and the other is empty; with the standard convention for empty products, both products are 1.
For n=13, the central pair of divisors of n! are 78975 and 78848. Since neither is divisible by 10, these values cannot be obtained. The next pair of divisors are 79200 = 12*11*10*6*5*2*1 and 78624 = 13*9*8*7*4*3, so a(13) = 79200 - 78624 = 576.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local l, ll, g, gg, p, i; l:= [i$i=1..n]; ll:= [i!$i=1..n]; g:= proc(m, j, b) local mm, bb, k; if j=1 then m else mm:= m; bb:= b; for k to 2 while (mmbb then bb:= max(bb, g(mm, j-1, bb)) fi; mm:= mm*l[j] od; bb fi end; Digits:= 700; p:= ceil(sqrt(ll[n])); gg:= g(1, nops(l), 1); ll[n]/gg -gg end: a(0):=0:
    seq(a(n), n=0..20); #  Alois P. Heinz, Jul 09 2009, revised Oct 17 2015
  • Mathematica
    a[n_] := Module[{l, ll, g, gg, p, i}, l = Range[n]; ll = Array[Factorial, n]; g[m_, j_, b_] := g[m, j, b] = Module[{mm, bb, k}, If[j==1, m, mm=m; bb=b; For[k=1, mm bb , bb = Max[bb, g[mm, j-1, bb]]]; mm = mm*l[[j]]]; bb]]; p = Ceiling[Sqrt[ ll[[n]]]]; gg = g[1, Length[l], 1]; ll[[n]]/gg - gg]; a[0]=0; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 35}] (* Jean-François Alcover, Feb 29 2016, after Alois P. Heinz *)
  • Python
    from math import prod, factorial
    from itertools import combinations
    def A038667(n):
        m = factorial(n)
        return 0 if n == 0 else min(abs((p:=prod(d))-m//p) for l in range(n,n//2,-1) for d in combinations(range(1,n+1),l)) # Chai Wah Wu, Apr 06 2022

Formula

a(n) = A200744(n) - A200743(n) = (A200744(n)^2 - A200743(n)^2) / A127180(n). - Max Alekseyev, Apr 08 2022
a(n) >= A061057(n).

Extensions

a(28)-a(31) from Alois P. Heinz, Jul 09 2009
a(1) and examples from Franklin T. Adams-Watters, Nov 22 2011
a(32)-a(33) from Alois P. Heinz, Nov 23 2011
a(34)-a(35) from Alois P. Heinz, Oct 17 2015

A283261 Product of the different products of subsets of the set of numbers from 1 to n.

Original entry on oeis.org

1, 1, 2, 36, 331776, 42998169600000000, 13974055172471046820331520000000000000, 1833132881579690383668380351534446872452674453158326975200092938148249600000000000000000000000000
Offset: 0

Views

Author

Jaroslav Krizek, Mar 04 2017

Keywords

Comments

Product of numbers in n-th row of A070861.

Examples

			Rows with subsets of the sets of numbers from 1 to n:
  {},
  {}, {1};
  {}, {1}, {2}, {1, 2};
  {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3};
  ...
Rows with the products of elements of these subsets:
  1;
  1, 1;
  1, 1, 2, 2;
  1, 1, 2, 3, 2, 3, 6, 6;
  ...
Rows with the different products of elements of these subsets:
  1;
  1;
  1, 2;
  1, 2, 3, 6;
  ...
a(0) = 1, a(1) = (1), a(2) = (1*2) = 2, a(3) = (1*2*3*6) = 36, ... .
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, {1},
          map(x-> [x, x*n][], b(n-1)))
        end:
    a:= n-> mul(i, i=b(n)):
    seq(a(n), n=0..7);  # Alois P. Heinz, Aug 01 2022
  • Mathematica
    Table[Times @@ Union@ Map[Times @@ # &, Subsets@ Range@ n], {n, 7}] (* Michael De Vlieger, Mar 05 2017 *)
  • PARI
    a(n)=my(v=[2..n]); factorback(Set(vector(2^(n-1),i, factorback(vecextract(v,i-1))))) \\ Charles R Greathouse IV, Mar 06 2017

Formula

a(n) <= n!^((A000005(n!))/2) = n!^(A027423(n)/2). - David A. Corneth, Mar 05 2017
a(n) = n!^(A263292(n)). - David A. Corneth, Mar 06 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2022
Showing 1-3 of 3 results.