A070861 Triangle of all possible distinct numbers obtained as a product of distinct numbers from 1..n.
1, 1, 1, 2, 1, 2, 3, 6, 1, 2, 3, 4, 6, 8, 12, 24, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 20, 24, 30, 36, 40, 48, 60, 72, 90, 120, 144, 180, 240, 360, 720, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42
Offset: 0
Examples
Triangle begins: 1; 1; 1, 2; 1, 2, 3, 6; 1, 2, 3, 4, 6, 8, 12, 24; ...
Links
- Reinhard Zumkeller, Rows n = 0..20 of triangle, flattened
Programs
-
Haskell
a070861 n = a070861_list !! (n-1) a070861_list = concat a070861_tabf a070861_tabf = [1] : f 2 [1] where f n ps = ps' : f (n+1) ps' where ps' = m ps $ map (n*) ps m [] ys = ys m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys' | x == y = x : m xs ys | otherwise = y : m xs' ys b070861 = bFile' "A070861" (concat $ take 20 a070861_tabf) 1 -- Reinhard Zumkeller, Jul 02 2011
-
Maple
T:= proc(n) option remember; `if`(n=0, 1, sort([map(x-> [x, x*n][], {T(n-1)})[]])[]) end: seq(T(n), n=0..7); # Alois P. Heinz, Aug 01 2022
-
Mathematica
row[n_] := Times @@@ Subsets[Range[n]] // Flatten // Union; Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 02 2015 *)
-
PARI
row(n)=my(v=[2..n]); Set(vector(2^(n-1),i, factorback(vecextract(v,i-1)))) \\ Charles R Greathouse IV, Mar 06 2017
Formula
Extensions
Corrected and extended by Lior Manor, May 23 2002
Row n=0 prepended by Alois P. Heinz, Aug 01 2022
Comments