A263298 Numbers n such that n-23, n-1, n+1 and n+23 are consecutive primes.
19890, 43890, 157770, 400680, 436650, 609780, 681090, 797310, 924360, 978180, 1093200, 1116570, 1179150, 1185930, 1313700, 1573110, 1663350, 2001510, 2110290, 2163570, 2336310, 2372370, 2408280, 2415630, 2562690, 2877840, 2896740, 2961900
Offset: 1
Keywords
Examples
19890 is the average of the four consecutive primes 19867, 19889, 19891, 19913. 43890 is the average of the four consecutive primes 43867, 43889, 43891, 43913.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Twin Primes
Programs
-
Mathematica
{p, q, r, s} = {2, 3, 5, 7};lst={}; While[p<5000000, If[Differences[{p, q, r, s}]=={22, 2, 22}, AppendTo[lst, q + 1]]; {p, q, r, s}={q, r, s,NextPrime@s}]; lst (* Vincenzo Librandi, Oct 14 2015 *)
-
PARI
isok(n) = isprime(n-1) && isprime(n+1) && (precprime(n-2) == n-23) && (nextprime(n+2) == n+23); \\ Michel Marcus, Oct 14 2015
-
Python
from sympy import isprime,prevprime,nextprime for i in range(0,5000001,6): if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-23 and nextprime(i+1) == i+23: print (i,end=', ')
Comments