cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263298 Numbers n such that n-23, n-1, n+1 and n+23 are consecutive primes.

Original entry on oeis.org

19890, 43890, 157770, 400680, 436650, 609780, 681090, 797310, 924360, 978180, 1093200, 1116570, 1179150, 1185930, 1313700, 1573110, 1663350, 2001510, 2110290, 2163570, 2336310, 2372370, 2408280, 2415630, 2562690, 2877840, 2896740, 2961900
Offset: 1

Views

Author

Karl V. Keller, Jr., Oct 13 2015

Keywords

Comments

This is a subsequence of A014574 (average of twin prime pairs), A256753 and A249674 (30n).
From Michel Marcus, Oct 15 2015: (Start)
n-23 and n+1 belong to A242476 (p and p+22 are primes).
n-23 and n-1 belong to A033560 (p and p+24 are primes).
(End)

Examples

			19890 is the average of the four consecutive primes 19867, 19889, 19891, 19913.
43890 is the average of the four consecutive primes 43867, 43889, 43891, 43913.
		

Crossrefs

Cf. A014574, A077800 (twin primes), A249674, A256753.

Programs

  • Mathematica
    {p, q, r, s} = {2, 3, 5, 7};lst={}; While[p<5000000, If[Differences[{p, q, r, s}]=={22, 2, 22}, AppendTo[lst, q + 1]]; {p, q, r, s}={q, r, s,NextPrime@s}]; lst (* Vincenzo Librandi, Oct 14 2015 *)
  • PARI
    isok(n) = isprime(n-1) && isprime(n+1) && (precprime(n-2) == n-23) && (nextprime(n+2) == n+23); \\ Michel Marcus, Oct 14 2015
  • Python
    from sympy import isprime,prevprime,nextprime
    for i in range(0,5000001,6):
      if  isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-23 and nextprime(i+1) == i+23: print (i,end=', ')