cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A263345 Expansion of Product_{k>=1} ((1 + x^k)/(1 + x^(3*k)))^k.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 22, 40, 65, 107, 176, 282, 448, 705, 1101, 1701, 2611, 3977, 6021, 9048, 13527, 20102, 29720, 43712, 63997, 93259, 135317, 195539, 281440, 403559, 576568, 820888, 1164826, 1647583, 2323169, 3266041, 4578305, 6399990, 8922389, 12406535
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[((1 + x^k)/(1 + x^(3*k)))^k,{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(1/6) * exp(2^(-1/3) * 3^(2/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/6) * 3^(2/3) * sqrt(Pi) * n^(2/3)).

A285262 Expansion of Product_{k>=1} ((1-x^(4*k))/(1-x^k))^k.

Original entry on oeis.org

1, 1, 3, 6, 12, 23, 45, 80, 145, 256, 446, 761, 1292, 2154, 3568, 5842, 9485, 15261, 24386, 38647, 60867, 95212, 148052, 228860, 351899, 538186, 819105, 1240704, 1870886, 2808888, 4199880, 6254577, 9279179, 13715740, 20202040, 29654210, 43386131, 63274874
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1-x^(4*k))/(1-x^k))^k, {k,1,nmax}], {x,0,nmax}], x]

Formula

a(n) ~ exp(3^(4/3) * (5*Zeta(3))^(1/3) * n^(2/3) / 4) * (5*Zeta(3))^(1/6) / (2^(7/6) * 3^(1/3)* sqrt(Pi) * n^(2/3)).

A285263 Expansion of Product_{k>=1} ((1-x^(5*k))/(1-x^k))^k.

Original entry on oeis.org

1, 1, 3, 6, 13, 23, 47, 83, 154, 269, 474, 809, 1387, 2313, 3859, 6330, 10341, 16680, 26790, 42586, 67375, 105731, 165097, 256052, 395248, 606501, 926502, 1408048, 2130788, 3209643, 4815595, 7194875, 10709843, 15881236, 23467805, 34556842, 50720003, 74200845
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} ((1-x^(m*k))/(1-x^k))^k, then a(n, m) ~ exp(3 * 2^(-2/3) * ((1-1/m^2)*Zeta(3))^(1/3) * n^(2/3)) * ((1-1/m^2)*Zeta(3))^(1/6) / (2^(1/3) * sqrt(3*Pi) * m^(1/12) * n^(2/3)).

Crossrefs

Cf. A026007 (m=2), A263346 (m=3), A285262 (m=4).
Cf. A285246.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1-x^(5*k))/(1-x^k))^k, {k,1,nmax}], {x,0,nmax}], x]

Formula

a(n) ~ exp(2^(1/3) * 3^(4/3) * 5^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * (2*Zeta(3))^(1/6) / (3^(1/3) * 5^(5/12) * sqrt(Pi) * n^(2/3)).
Showing 1-3 of 3 results.