cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A285290 Expansion of Product_{k>=1} ((1 + x^k) / (1 + x^(4*k)))^k.

Original entry on oeis.org

1, 1, 2, 5, 7, 15, 26, 44, 74, 125, 205, 331, 534, 844, 1332, 2077, 3215, 4934, 7533, 11410, 17191, 25751, 38346, 56833, 83814, 123025, 179776, 261639, 379186, 547476, 787516, 1128775, 1612395, 2295701, 3258177, 4610130, 6503873, 9149365, 12835612, 17959085
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1+x^(4*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(-8/3) * 3^(5/3) * (5*Zeta(3))^(1/3) * n^(2/3)) * (5*Zeta(3))^(1/6) / (2^(4/3) * 3^(1/6) * sqrt(Pi) * n^(2/3)).

A285291 Expansion of Product_{k>=1} ((1 + x^k) / (1 + x^(5*k)))^k.

Original entry on oeis.org

1, 1, 2, 5, 8, 15, 27, 47, 78, 134, 218, 356, 576, 916, 1449, 2268, 3525, 5431, 8324, 12652, 19129, 28754, 42974, 63898, 94553, 139241, 204144, 298045, 433328, 627592, 905560, 1301934, 1865362, 2663816, 3791813, 5380911, 7613286, 10740839, 15111141, 21202615
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2017

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} ((1 + x^k) / (1 + x^(m*k)))^k, then a(n, m) ~ exp(2^(-4/3) * 3^(4/3) * (1-1/m^2)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * ((1-1/m^2)*Zeta(3))^(1/6) / (2^(2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)).

Crossrefs

Cf. A285289 (m=2), A263345 (m=3), A285290 (m=4).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1+x^(5*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(-1/3) * 3^(5/3) * 5^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (5^(1/3) * 6^(1/6) * sqrt(Pi) * n^(2/3)).

A263346 Expansion of Product_{k>=1} ((1 - x^(3*k))/(1 - x^k))^k.

Original entry on oeis.org

1, 1, 3, 5, 12, 21, 40, 71, 130, 221, 387, 648, 1095, 1800, 2964, 4792, 7730, 12301, 19510, 30619, 47859, 74179, 114469, 175427, 267684, 406039, 613325, 921671, 1379500, 2055313, 3050652, 4509385, 6641966, 9746452, 14254242, 20775255, 30184451, 43715711
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[((1 - x^(3*k))/(1 - x^k))^k,{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ 2^(1/6) * Zeta(3)^(1/6) * exp(6^(1/3) * Zeta(3)^(1/3) * n^(2/3)) / (3^(11/12) * sqrt(Pi) * n^(2/3)).

A285289 Expansion of Product_{k>=1} ((1 + x^k) / (1 + x^(2*k)))^k.

Original entry on oeis.org

1, 1, 1, 4, 5, 10, 16, 26, 44, 68, 110, 167, 265, 399, 609, 919, 1371, 2040, 3005, 4420, 6436, 9364, 13501, 19433, 27806, 39639, 56265, 79572, 112126, 157390, 220283, 307163, 427145, 592029, 818359, 1127878, 1550483, 2125656, 2907013, 3965853, 5397497
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1+x^(2*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3^(5/3) * Zeta(3)^(1/3) * n^(2/3) / 4) * Zeta(3)^(1/6) / (2 * 3^(1/6) * sqrt(Pi) * n^(2/3)).
Showing 1-4 of 4 results.