cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A263345 Expansion of Product_{k>=1} ((1 + x^k)/(1 + x^(3*k)))^k.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 22, 40, 65, 107, 176, 282, 448, 705, 1101, 1701, 2611, 3977, 6021, 9048, 13527, 20102, 29720, 43712, 63997, 93259, 135317, 195539, 281440, 403559, 576568, 820888, 1164826, 1647583, 2323169, 3266041, 4578305, 6399990, 8922389, 12406535
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[((1 + x^k)/(1 + x^(3*k)))^k,{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(1/6) * exp(2^(-1/3) * 3^(2/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/6) * 3^(2/3) * sqrt(Pi) * n^(2/3)).

A285290 Expansion of Product_{k>=1} ((1 + x^k) / (1 + x^(4*k)))^k.

Original entry on oeis.org

1, 1, 2, 5, 7, 15, 26, 44, 74, 125, 205, 331, 534, 844, 1332, 2077, 3215, 4934, 7533, 11410, 17191, 25751, 38346, 56833, 83814, 123025, 179776, 261639, 379186, 547476, 787516, 1128775, 1612395, 2295701, 3258177, 4610130, 6503873, 9149365, 12835612, 17959085
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1+x^(4*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(-8/3) * 3^(5/3) * (5*Zeta(3))^(1/3) * n^(2/3)) * (5*Zeta(3))^(1/6) / (2^(4/3) * 3^(1/6) * sqrt(Pi) * n^(2/3)).

A285289 Expansion of Product_{k>=1} ((1 + x^k) / (1 + x^(2*k)))^k.

Original entry on oeis.org

1, 1, 1, 4, 5, 10, 16, 26, 44, 68, 110, 167, 265, 399, 609, 919, 1371, 2040, 3005, 4420, 6436, 9364, 13501, 19433, 27806, 39639, 56265, 79572, 112126, 157390, 220283, 307163, 427145, 592029, 818359, 1127878, 1550483, 2125656, 2907013, 3965853, 5397497
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1+x^(2*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3^(5/3) * Zeta(3)^(1/3) * n^(2/3) / 4) * Zeta(3)^(1/6) / (2 * 3^(1/6) * sqrt(Pi) * n^(2/3)).

A304629 a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 + x^(5*k)))^n.

Original entry on oeis.org

1, 1, 3, 13, 51, 201, 819, 3389, 14131, 59341, 250703, 1064207, 4535091, 19390229, 83139955, 357354213, 1539272499, 6642769925, 28714955571, 124312591469, 538895612751, 2338948779320, 10162837993377, 44202371860240, 192431323820851, 838442649862701, 3656031108325651
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 + x^(5 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[Product[1/(1 - x^k + x^(2 k) - x^(3 k) + x^(4 k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    (* Calculation of constants {d,c}: *) With[{k = 5}, {1/r, Sqrt[QPochhammer[-1, (r*s)^k] / (2*Pi*(r^2*s*Derivative[0, 2][QPochhammer][-1, r*s] - k^2*(r*s)^(2*k) * Derivative[0, 2][QPochhammer][-1, (r*s)^k] - k*(1 + k)*(r*s)^k * Derivative[0, 1][QPochhammer][-1, (r*s)^k]))]} /. FindRoot[{s == QPochhammer[-1, r*s] / QPochhammer[-1, (r*s)^k], QPochhammer[-1, (r*s)^k] + k*(r*s)^k*Derivative[0, 1][QPochhammer][-1, (r*s)^k] == r*Derivative[0, 1][QPochhammer][-1, r*s]}, {r, 1/4}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} 1/(1 - x^k + x^(2*k) - x^(3*k) + x^(4*k))^n.
a(n) ~ c * d^n / sqrt(n), where d = 4.445766346387064439086120427... and c = 0.267035948020079842478289... - Vaclav Kotesovec, May 18 2018
Showing 1-4 of 4 results.